opensim/OpenSim/Region/ScriptEngine/YEngine/MMRScriptCodeGen.cs

6418 lines
282 KiB
C#

/*
* Copyright (c) Contributors, http://opensimulator.org/
* See CONTRIBUTORS.TXT for a full list of copyright holders.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the OpenSimulator Project nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
using OpenSim.Region.ScriptEngine.Shared.ScriptBase;
using OpenSim.Region.ScriptEngine.Yengine;
using System;
using System.Collections.Generic;
using System.IO;
using System.Reflection;
using System.Reflection.Emit;
using System.Runtime.Serialization;
using System.Text;
using LSL_Float = OpenSim.Region.ScriptEngine.Shared.LSL_Types.LSLFloat;
using LSL_Integer = OpenSim.Region.ScriptEngine.Shared.LSL_Types.LSLInteger;
using LSL_Key = OpenSim.Region.ScriptEngine.Shared.LSL_Types.LSLString;
using LSL_List = OpenSim.Region.ScriptEngine.Shared.LSL_Types.list;
using LSL_Rotation = OpenSim.Region.ScriptEngine.Shared.LSL_Types.Quaternion;
using LSL_String = OpenSim.Region.ScriptEngine.Shared.LSL_Types.LSLString;
using LSL_Vector = OpenSim.Region.ScriptEngine.Shared.LSL_Types.Vector3;
/**
* @brief translate a reduced script token into corresponding CIL code.
* The single script token contains a tokenized and textured version of the whole script file.
*/
namespace OpenSim.Region.ScriptEngine.Yengine
{
public interface IScriptCodeGen
{
ScriptMyILGen ilGen
{
get;
} // the output instruction stream
void ErrorMsg(Token token, string message);
void PushDefaultValue(TokenType type);
void PushXMRInst();
}
public class ScriptCodeGen: IScriptCodeGen
{
public static readonly string OBJECT_CODE_MAGIC = "YObjectCode";
// reserve positive version values for original xmr
public static int COMPILED_VERSION_VALUE = -9; // decremented when compiler or object file changes
public static readonly int CALL_FRAME_MEMUSE = 64;
public static readonly int STRING_LEN_TO_MEMUSE = 2;
public static Type xmrInstSuperType = null; // typeof whatever is actually malloc'd for script instances
// - must inherit from XMRInstAbstract
// Static tables that there only needs to be one copy of for all.
private static readonly VarDict legalEventHandlers = CreateLegalEventHandlers();
private static readonly CompValu[] zeroCompValus = Array.Empty<CompValu>();
private static readonly TokenType[] zeroArgs = Array.Empty<TokenType>();
private static readonly TokenTypeBool tokenTypeBool = new(null);
private static readonly TokenTypeExc tokenTypeExc = new(null);
private static readonly TokenTypeFloat tokenTypeFlt = new(null);
private static readonly TokenTypeInt tokenTypeInt = new(null);
private static readonly TokenTypeObject tokenTypeObj = new(null);
private static readonly TokenTypeRot tokenTypeRot = new(null);
private static readonly TokenTypeStr tokenTypeStr = new(null);
private static readonly TokenTypeVec tokenTypeVec = new(null);
private static readonly Type[] instanceTypeArg = new Type[] { typeof(XMRInstAbstract) };
private static readonly string[] instanceNameArg = new string[] { "$xmrthis" };
private static readonly ConstructorInfo lslFloatConstructorInfo = typeof(LSL_Float).GetConstructor(new Type[] { typeof(double) });
private static readonly ConstructorInfo lslIntegerConstructorInfo = typeof(LSL_Integer).GetConstructor(new Type[] { typeof(int) });
private static readonly ConstructorInfo lslListConstructorInfo = typeof(LSL_List).GetConstructor(new Type[] { typeof(object[]) });
public static readonly ConstructorInfo lslRotationConstructorInfo = typeof(LSL_Rotation).GetConstructor(new Type[] { typeof(double), typeof(double), typeof(double), typeof(double) });
private static readonly ConstructorInfo lslStringConstructorInfo = typeof(LSL_String).GetConstructor(new Type[] { typeof(string) });
public static readonly ConstructorInfo lslVectorConstructorInfo = typeof(LSL_Vector).GetConstructor(new Type[] { typeof(double), typeof(double), typeof(double) });
private static readonly ConstructorInfo scriptBadCallNoExceptionConstructorInfo = typeof(ScriptBadCallNoException).GetConstructor(new Type[] { typeof(int) });
private static readonly ConstructorInfo scriptChangeStateExceptionConstructorInfo = typeof(ScriptChangeStateException).GetConstructor(new Type[] { typeof(int) });
private static readonly ConstructorInfo scriptRestoreCatchExceptionConstructorInfo = typeof(ScriptRestoreCatchException).GetConstructor(new Type[] { typeof(Exception) });
private static readonly ConstructorInfo scriptUndefinedStateExceptionConstructorInfo = typeof(ScriptUndefinedStateException).GetConstructor(new Type[] { typeof(string) });
private static readonly ConstructorInfo sdtClassConstructorInfo = typeof(XMRSDTypeClObj).GetConstructor(new Type[] { typeof(XMRInstAbstract), typeof(int) });
private static readonly ConstructorInfo xmrArrayConstructorInfo = typeof(XMR_Array).GetConstructor(new Type[] { typeof(XMRInstAbstract) });
private static readonly FieldInfo callModeFieldInfo = typeof(XMRInstAbstract).GetField("callMode");
private static readonly FieldInfo doGblInitFieldInfo = typeof(XMRInstAbstract).GetField("doGblInit");
private static readonly FieldInfo ehArgsFieldInfo = typeof(XMRInstAbstract).GetField("ehArgs");
private static readonly FieldInfo rotationXFieldInfo = typeof(LSL_Rotation).GetField("x");
private static readonly FieldInfo rotationYFieldInfo = typeof(LSL_Rotation).GetField("y");
private static readonly FieldInfo rotationZFieldInfo = typeof(LSL_Rotation).GetField("z");
private static readonly FieldInfo rotationSFieldInfo = typeof(LSL_Rotation).GetField("s");
private static readonly FieldInfo sdtXMRInstFieldInfo = typeof(XMRSDTypeClObj).GetField("xmrInst");
private static readonly FieldInfo stackLeftFieldInfo = typeof(XMRInstAbstract).GetField("m_StackLeft");
private static readonly FieldInfo heapUsedFieldInfo = typeof(XMRInstAbstract).GetField("m_localsHeapUsed");
private static readonly FieldInfo vectorXFieldInfo = typeof(LSL_Vector).GetField("x");
private static readonly FieldInfo vectorYFieldInfo = typeof(LSL_Vector).GetField("y");
private static readonly FieldInfo vectorZFieldInfo = typeof(LSL_Vector).GetField("z");
private static readonly MethodInfo arrayClearMethodInfo = typeof(XMR_Array).GetMethod("__pub_clear", Array.Empty<Type>());
private static readonly MethodInfo arrayCountMethodInfo = typeof(XMR_Array).GetMethod("__pub_count", Array.Empty<Type>());
private static readonly MethodInfo arrayIndexMethodInfo = typeof(XMR_Array).GetMethod("__pub_index", new Type[] { typeof(int) });
private static readonly MethodInfo arrayValueMethodInfo = typeof(XMR_Array).GetMethod("__pub_value", new Type[] { typeof(int) });
private static readonly MethodInfo checkRunStackMethInfo = typeof(XMRInstAbstract).GetMethod("CheckRunStack", Array.Empty<Type>());
private static readonly MethodInfo checkRunQuickMethInfo = typeof(XMRInstAbstract).GetMethod("CheckRunQuick", Array.Empty<Type>());
private static readonly MethodInfo ehArgUnwrapFloat = GetStaticMethod(typeof(TypeCast), "EHArgUnwrapFloat", new Type[] { typeof(object) });
private static readonly MethodInfo ehArgUnwrapInteger = GetStaticMethod(typeof(TypeCast), "EHArgUnwrapInteger", new Type[] { typeof(object) });
private static readonly MethodInfo ehArgUnwrapRotation = GetStaticMethod(typeof(TypeCast), "EHArgUnwrapRotation", new Type[] { typeof(object) });
private static readonly MethodInfo ehArgUnwrapString = GetStaticMethod(typeof(TypeCast), "EHArgUnwrapString", new Type[] { typeof(object) });
private static readonly MethodInfo ehArgUnwrapVector = GetStaticMethod(typeof(TypeCast), "EHArgUnwrapVector", new Type[] { typeof(object) });
private static readonly MethodInfo xmrArrPubIndexMethod = typeof(XMR_Array).GetMethod("__pub_index", new Type[] { typeof(int) });
private static readonly MethodInfo xmrArrPubValueMethod = typeof(XMR_Array).GetMethod("__pub_value", new Type[] { typeof(int) });
private static readonly MethodInfo captureStackFrameMethodInfo = typeof(XMRInstAbstract).GetMethod("CaptureStackFrame", new Type[] { typeof(string), typeof(int), typeof(int) });
private static readonly MethodInfo restoreStackFrameMethodInfo = typeof(XMRInstAbstract).GetMethod("RestoreStackFrame", new Type[] { typeof(string), typeof(int).MakeByRefType() });
private static readonly MethodInfo stringCompareMethodInfo = GetStaticMethod(typeof(String), "Compare", new Type[] { typeof(string), typeof(string), typeof(StringComparison) });
private static readonly MethodInfo stringConcat2MethodInfo = GetStaticMethod(typeof(String), "Concat", new Type[] { typeof(string), typeof(string) });
private static readonly MethodInfo stringConcat3MethodInfo = GetStaticMethod(typeof(String), "Concat", new Type[] { typeof(string), typeof(string), typeof(string) });
private static readonly MethodInfo stringConcat4MethodInfo = GetStaticMethod(typeof(String), "Concat", new Type[] { typeof(string), typeof(string), typeof(string), typeof(string) });
private static readonly MethodInfo lslRotationNegateMethodInfo = GetStaticMethod(typeof(ScriptCodeGen), "LSLRotationNegate", new Type[] { typeof(LSL_Rotation) });
private static readonly MethodInfo lslVectorNegateMethodInfo = GetStaticMethod(typeof(ScriptCodeGen), "LSLVectorNegate", new Type[] { typeof(LSL_Vector) });
private static readonly MethodInfo scriptRestoreCatchExceptionUnwrap = GetStaticMethod(typeof(ScriptRestoreCatchException), "Unwrap", new Type[] { typeof(Exception) });
private static readonly MethodInfo thrownExceptionWrapMethodInfo = GetStaticMethod(typeof(ScriptThrownException), "Wrap", new Type[] { typeof(object) });
private static readonly MethodInfo catchExcToStrMethodInfo = GetStaticMethod(typeof(ScriptCodeGen), "CatchExcToStr", new Type[] { typeof(Exception) });
private static readonly MethodInfo consoleWriteMethodInfo = GetStaticMethod(typeof(ScriptCodeGen), "ConsoleWrite", new Type[] { typeof(object) });
public static void ConsoleWrite(object o)
{
o ??= "<<null>>";
Console.Write(o.ToString());
}
public static bool CodeGen(TokenScript tokenScript, BinaryWriter objFileWriter, string sourceHash)
{
// Run compiler such that it has a 'this' context for convenience.
ScriptCodeGen scg = new(tokenScript, objFileWriter, sourceHash);
// Return pointer to resultant script object code.
return !scg.youveAnError;
}
// There is one set of these variables for each script being compiled.
private bool mightGetHere = false;
private bool youveAnError = false;
private BreakContTarg curBreakTarg = null;
private BreakContTarg curContTarg = null;
private int lastErrorLine = 0;
private int nStates = 0;
private readonly string sourceHash;
private string lastErrorFile = "";
private string[] stateNames;
private readonly XMRInstArSizes glblSizes = new ();
private Token errorMessageToken = null;
private TokenDeclVar curDeclFunc = null;
private TokenStmtBlock curStmtBlock = null;
private readonly BinaryWriter objFileWriter = null;
private readonly TokenScript tokenScript = null;
public int tempCompValuNum = 0;
private TokenDeclSDTypeClass currentSDTClass = null;
private Dictionary<string, int> stateIndices = null;
// These get cleared at beginning of every function definition
private ScriptMyLocal instancePointer; // holds XMRInstanceSuperType pointer
private ScriptMyLocal curHeapSize;
private ScriptMyLabel retLabel = null; // where to jump to exit function
private ScriptMyLocal retValue = null;
private ScriptMyLocal actCallNo = null; // for the active try/catch/finally stack or the big one outside them all
private LinkedList<CallLabel> actCallLabels = new(); // for the active try/catch/finally stack or the big one outside them all
private LinkedList<CallLabel> allCallLabels = new(); // this holds each and every one for all stacks in total
public CallLabel openCallLabel = null; // only one call label can be open at a time
// - the call label is open from the time of CallPre() until corresponding CallPost()
// - so no non-trivial pushes/pops etc allowed between a CallPre() and a CallPost()
private ScriptMyILGen _ilGen;
public ScriptMyILGen ilGen
{
get
{
return _ilGen;
}
}
private ScriptCodeGen(TokenScript tokenScript, BinaryWriter objFileWriter, string sourceHash)
{
this.tokenScript = tokenScript;
this.objFileWriter = objFileWriter;
this.sourceHash = sourceHash;
try
{
PerformCompilation();
}
catch
{
// if we've an error, just punt on any exception
// it's probably just a null reference from something
// not being filled in etc.
if(!youveAnError)
throw;
}
finally
{
}
}
/**
* @brief Convert 'tokenScript' to 'objFileWriter' format.
* 'tokenScript' is a parsed/reduced abstract syntax tree of the script source file
* 'objFileWriter' is a serialized form of the CIL code that we generate
*/
private void PerformCompilation()
{
// errorMessageToken is used only when the given token doesn't have a
// output delegate associated with it such as for backend API functions
// that only have one copy for the whole system. It is kept up-to-date
// approximately but is rarely needed so going to assume it doesn't have
// to be exact.
errorMessageToken = tokenScript;
// Set up dictionary to translate state names to their index number.
stateIndices = new Dictionary<string, int>();
// Assign each state its own unique index.
// The default state gets 0.
nStates = 0;
tokenScript.defaultState.body.index = nStates++;
stateIndices.Add("default", 0);
foreach(KeyValuePair<string, TokenDeclState> kvp in tokenScript.states)
{
TokenDeclState declState = kvp.Value;
declState.body.index = nStates++;
stateIndices.Add(declState.name.val, declState.body.index);
}
// Make up an array that translates state indices to state name strings.
stateNames = new string[nStates];
stateNames[0] = "default";
foreach(KeyValuePair<string, TokenDeclState> kvp in tokenScript.states)
{
TokenDeclState declState = kvp.Value;
stateNames[declState.body.index] = declState.name.val;
}
// Make sure we have delegates for all script-defined functions and methods,
// creating anonymous ones if needed. Note that this includes all property
// getter and setter methods.
foreach(TokenDeclVar declFunc in tokenScript.variablesStack)
{
if(declFunc.retType != null)
{
declFunc.GetDelType();
}
}
while(true)
{
bool itIsAGoodDayToDie = true;
try
{
foreach(TokenDeclSDType sdType in tokenScript.sdSrcTypesValues)
{
itIsAGoodDayToDie = false;
if(sdType is TokenDeclSDTypeClass sdtClass)
{
foreach(TokenDeclVar declFunc in sdtClass.members)
{
if(declFunc.retType != null)
{
declFunc.GetDelType();
if(declFunc.funcNameSig.val.StartsWith("$ctor("))
{
// this is for the "$new()" static method that we create below.
// See GenerateStmtNewobj() etc.
_ = new TokenTypeSDTypeDelegate(declFunc, sdtClass.MakeRefToken(declFunc),
declFunc.argDecl.types, tokenScript);
}
}
}
}
if(sdType is TokenDeclSDTypeInterface sdtIFace)
{
foreach(TokenDeclVar declFunc in sdtIFace.methsNProps)
{
if(declFunc.retType != null)
{
declFunc.GetDelType();
}
}
}
itIsAGoodDayToDie = true;
}
break;
}
catch(InvalidOperationException)
{
if(!itIsAGoodDayToDie)
throw;
// fetching the delegate created an anonymous entry in tokenScript.sdSrcTypesValues
// which made the foreach statement puque, so start over...
}
}
// No more types can be defined or we won't be able to write them to the object file.
tokenScript.sdSrcTypesSeal();
// Assign all global variables a slot in its corresponding XMRInstance.gbl<Type>s[] array.
// Global variables are simply elements of those arrays at runtime, thus we don't need to create
// an unique class for each script, we can just use XMRInstance as is for all.
foreach(TokenDeclVar declVar in tokenScript.variablesStack)
{
// Omit 'constant' variables as they are coded inline so don't need a slot.
if(declVar.constant)
continue;
// Do functions later.
if(declVar.retType != null)
continue;
// Create entry in the value array for the variable or property.
declVar.location = new CompValuGlobalVar(declVar, glblSizes);
}
// Likewise for any static fields in script-defined classes.
// They can be referenced anywhere by <typename>.<fieldname>, see
// GenerateFromLValSField().
foreach(TokenDeclSDType sdType in tokenScript.sdSrcTypesValues)
{
if(sdType is not TokenDeclSDTypeClass)
continue;
TokenDeclSDTypeClass sdtClass = (TokenDeclSDTypeClass)sdType;
foreach(TokenDeclVar declVar in sdtClass.members)
{
// Omit 'constant' variables as they are coded inline so don't need a slot.
if(declVar.constant)
continue;
// Do methods later.
if(declVar.retType != null)
continue;
// Ignore non-static fields for now.
// They get assigned below.
if((declVar.sdtFlags & ScriptReduce.SDT_STATIC) == 0)
continue;
// Create entry in the value array for the static field or static property.
declVar.location = new CompValuGlobalVar(declVar, glblSizes);
}
}
// Assign slots for all interface method prototypes.
// These indices are used to index the array of delegates that holds a class' implementation of an
// interface.
// Properties do not get a slot because they aren't called as such. But their corresponding
// <name>$get() and <name>$set(<type>) methods are in the table and they each get a slot.
foreach(TokenDeclSDType sdType in tokenScript.sdSrcTypesValues)
{
if(sdType is not TokenDeclSDTypeInterface sdtIFace)
continue;
int vti = 0;
foreach(TokenDeclVar im in sdtIFace.methsNProps)
{
if((im.getProp == null) && (im.setProp == null))
{
im.vTableIndex = vti++;
}
}
}
// Assign slots for all instance fields and virtual methods of script-defined classes.
int maxExtends = tokenScript.sdSrcTypesCount;
bool didOne;
do
{
didOne = false;
foreach(TokenDeclSDType sdType in tokenScript.sdSrcTypesValues)
{
if(sdType is not TokenDeclSDTypeClass sdtClass)
continue;
if(sdtClass.slotsAssigned)
continue;
// If this class extends another, the extended class has to already
// be set up, because our slots add on to the end of the extended class.
TokenDeclSDTypeClass extends = sdtClass.extends;
if(extends != null)
{
if(!extends.slotsAssigned)
continue;
sdtClass.instSizes = extends.instSizes;
sdtClass.numVirtFuncs = extends.numVirtFuncs;
sdtClass.numInterfaces = extends.numInterfaces;
int n = maxExtends;
for(TokenDeclSDTypeClass ex = extends; ex != null; ex = ex.extends)
{
if(--n < 0)
break;
}
if(n < 0)
{
ErrorMsg(sdtClass, "loop in extended classes");
sdtClass.slotsAssigned = true;
continue;
}
}
// Extended class's slots all assigned, assign our instance fields
// slots in the XMRSDTypeClObj arrays.
foreach(TokenDeclVar declVar in sdtClass.members)
{
if(declVar.retType != null)
continue;
if(declVar.constant)
continue;
if((declVar.sdtFlags & ScriptReduce.SDT_STATIC) != 0)
continue;
if((declVar.getProp == null) && (declVar.setProp == null))
{
declVar.type.AssignVarSlot(declVar, sdtClass.instSizes);
}
}
// ... and assign virtual method vtable slots.
//
// - : error if any overridden method, doesn't need a slot
// abstract : error if any overridden method, alloc new slot but leave it empty
// new : ignore any overridden method, doesn't need a slot
// new abstract : ignore any overridden method, alloc new slot but leave it empty
// override : must have overridden abstract/virtual, use old slot
// override abstract : must have overridden abstract, use old slot but it is still empty
// static : error if any overridden method, doesn't need a slot
// static new : ignore any overridden method, doesn't need a slot
// virtual : error if any overridden method, alloc new slot and fill it in
// virtual new : ignore any overridden method, alloc new slot and fill it in
foreach(TokenDeclVar declFunc in sdtClass.members)
{
if(declFunc.retType == null)
continue;
curDeclFunc = declFunc;
// See if there is a method in an extended class that this method overshadows.
// If so, check for various conflicts.
// In any case, SDT_NEW on our method means to ignore any overshadowed method.
string declLongName = sdtClass.longName.val + "." + declFunc.funcNameSig.val;
uint declFlags = declFunc.sdtFlags;
TokenDeclVar overridden = null;
if((declFlags & ScriptReduce.SDT_NEW) == 0)
{
for(TokenDeclSDTypeClass sdtd = extends; sdtd != null; sdtd = sdtd.extends)
{
overridden = FindExactWithRet(sdtd.members, declFunc.name, declFunc.retType, declFunc.argDecl.types);
if(overridden != null)
break;
}
}
if(overridden != null)
do
{
string overLongName = overridden.sdtClass.longName.val;
uint overFlags = overridden.sdtFlags;
// See if overridden method allows itself to be overridden.
if((overFlags & ScriptReduce.SDT_ABSTRACT) != 0)
{
if((declFlags & (ScriptReduce.SDT_ABSTRACT | ScriptReduce.SDT_OVERRIDE)) == 0)
{
ErrorMsg(declFunc, declLongName + " overshadows abstract " + overLongName + " but is not marked abstract, new or override");
break;
}
}
else if((overFlags & ScriptReduce.SDT_FINAL) != 0)
{
ErrorMsg(declFunc, declLongName + " overshadows final " + overLongName + " but is not marked new");
}
else if((overFlags & (ScriptReduce.SDT_OVERRIDE | ScriptReduce.SDT_VIRTUAL)) != 0)
{
if((declFlags & (ScriptReduce.SDT_NEW | ScriptReduce.SDT_OVERRIDE)) == 0)
{
ErrorMsg(declFunc, declLongName + " overshadows virtual " + overLongName + " but is not marked new or override");
break;
}
}
else
{
ErrorMsg(declFunc, declLongName + " overshadows non-virtual " + overLongName + " but is not marked new");
break;
}
// See if our method is capable of overriding the other method.
if((declFlags & ScriptReduce.SDT_ABSTRACT) != 0)
{
if((overFlags & ScriptReduce.SDT_ABSTRACT) == 0)
{
ErrorMsg(declFunc, declLongName + " abstract overshadows non-abstract " + overLongName + " but is not marked new");
break;
}
}
else if((declFlags & ScriptReduce.SDT_OVERRIDE) != 0)
{
if((overFlags & (ScriptReduce.SDT_ABSTRACT | ScriptReduce.SDT_OVERRIDE | ScriptReduce.SDT_VIRTUAL)) == 0)
{
ErrorMsg(declFunc, declLongName + " override overshadows non-abstract/non-virtual " + overLongName);
break;
}
}
else
{
ErrorMsg(declFunc, declLongName + " overshadows " + overLongName + " but is not marked new");
break;
}
} while(false);
// Now we can assign it a vtable slot if it needs one (ie, it is virtual).
declFunc.vTableIndex = -1;
if(overridden != null)
{
declFunc.vTableIndex = overridden.vTableIndex;
}
else if((declFlags & ScriptReduce.SDT_OVERRIDE) != 0)
{
ErrorMsg(declFunc, declLongName + " marked override but nothing matching found that it overrides");
}
if((declFlags & (ScriptReduce.SDT_ABSTRACT | ScriptReduce.SDT_VIRTUAL)) != 0)
{
declFunc.vTableIndex = sdtClass.numVirtFuncs++;
}
}
curDeclFunc = null;
// ... and assign implemented interface slots.
// Note that our implementations of a given interface is completely independent of any
// rootward class's implementation of that same interface.
int nIFaces = sdtClass.numInterfaces + sdtClass.implements.Count;
sdtClass.iFaces = new TokenDeclSDTypeInterface[nIFaces];
sdtClass.iImplFunc = new TokenDeclVar[nIFaces][];
for(int i = 0; i < sdtClass.numInterfaces; i++)
{
sdtClass.iFaces[i] = extends.iFaces[i];
sdtClass.iImplFunc[i] = extends.iImplFunc[i];
}
foreach(TokenDeclSDTypeInterface intf in sdtClass.implements)
{
int i = sdtClass.numInterfaces++;
sdtClass.iFaces[i] = intf;
sdtClass.intfIndices.Add(intf.longName.val, i);
int nMeths = 0;
foreach(TokenDeclVar m in intf.methsNProps)
{
if((m.getProp == null) && (m.setProp == null))
nMeths++;
}
sdtClass.iImplFunc[i] = new TokenDeclVar[nMeths];
}
foreach(TokenDeclVar classMeth in sdtClass.members)
{
if(classMeth.retType == null)
continue;
curDeclFunc = classMeth;
for(TokenIntfImpl intfImpl = classMeth.implements; intfImpl != null; intfImpl = (TokenIntfImpl)intfImpl.nextToken)
{
// One of the class methods implements an interface method.
// Try to find the interface method that is implemented and verify its signature.
TokenDeclSDTypeInterface intfType = intfImpl.intfType.decl;
TokenDeclVar intfMeth = FindExactWithRet(intfType.methsNProps, intfImpl.methName, classMeth.retType, classMeth.argDecl.types);
if(intfMeth == null)
{
ErrorMsg(intfImpl, "interface does not define method " + intfImpl.methName.val + classMeth.argDecl.GetArgSig());
continue;
}
// See if this class was declared to implement that interface.
bool found = false;
foreach(TokenDeclSDTypeInterface intf in sdtClass.implements)
{
if(intf == intfType)
{
found = true;
break;
}
}
if(!found)
{
ErrorMsg(intfImpl, "class not declared to implement " + intfType.longName.val);
continue;
}
// Get index in iFaces[] and iImplFunc[] arrays.
// Start scanning from the end in case one of our rootward classes also implements the interface.
// We should always be successful because we know by now that this class implements the interface.
int i;
for(i = sdtClass.numInterfaces; --i >= 0;)
{
if(sdtClass.iFaces[i] == intfType)
break;
}
// Now remember which of the class methods implements that interface method.
int j = intfMeth.vTableIndex;
if(sdtClass.iImplFunc[i][j] != null)
{
ErrorMsg(intfImpl, "also implemented by " + sdtClass.iImplFunc[i][j].funcNameSig.val);
continue;
}
sdtClass.iImplFunc[i][j] = classMeth;
}
}
curDeclFunc = null;
// Now make sure this class implements all methods for all declared interfaces.
for(int i = sdtClass.numInterfaces - sdtClass.implements.Count; i < sdtClass.numInterfaces; i++)
{
TokenDeclVar[] implementations = sdtClass.iImplFunc[i];
for(int j = implementations.Length; --j >= 0;)
{
if(implementations[j] == null)
{
TokenDeclSDTypeInterface intf = sdtClass.iFaces[i];
TokenDeclVar meth = null;
foreach(TokenDeclVar im in intf.methsNProps)
{
if(im.vTableIndex == j)
{
meth = im;
break;
}
}
ErrorMsg(sdtClass, "does not implement " + intf.longName.val + "." + meth.funcNameSig.val);
}
}
}
// All slots for this class have been assigned.
sdtClass.slotsAssigned = true;
didOne = true;
}
} while(didOne);
// Compute final values for all variables/fields declared as 'constant'.
// Note that there may be forward references.
do
{
didOne = false;
foreach(TokenDeclVar tdv in tokenScript.variablesStack)
{
if(tdv.constant && tdv.init is not TokenRValConst)
{
tdv.init = tdv.init.TryComputeConstant(LookupInitConstants, ref didOne);
}
}
foreach(TokenDeclSDType sdType in tokenScript.sdSrcTypesValues)
{
if(sdType is not TokenDeclSDTypeClass TokenDeclSDTypeClasssdType)
continue;
currentSDTClass = TokenDeclSDTypeClasssdType;
foreach(TokenDeclVar tdv in currentSDTClass.members)
{
if(tdv.constant && tdv.init is not TokenRValConst)
{
tdv.init = tdv.init.TryComputeConstant(LookupInitConstants, ref didOne);
}
}
}
currentSDTClass = null;
} while(didOne);
// Now we should be able to assign all those constants their type and location.
foreach(TokenDeclVar tdv in tokenScript.variablesStack)
{
if(tdv.constant)
{
if (tdv.init is TokenRValConst rvc)
{
tdv.type = rvc.tokType;
tdv.location = rvc.GetCompValu();
}
else
{
ErrorMsg(tdv, "value is not constant");
}
}
}
foreach(TokenDeclSDType sdType in tokenScript.sdSrcTypesValues)
{
if(sdType is not TokenDeclSDTypeClass TokenDeclSDTypeClasssdType)
continue;
currentSDTClass = TokenDeclSDTypeClasssdType;
foreach(TokenDeclVar tdv in currentSDTClass.members)
{
if(tdv.constant)
{
if (tdv.init is TokenRValConst rvc)
{
tdv.type = rvc.tokType;
tdv.location = rvc.GetCompValu();
}
else
{
ErrorMsg(tdv, "value is not constant");
}
}
}
}
currentSDTClass = null;
// For all classes that define all the methods needed for the class, ie, they aren't abstract,
// define a static class.$new() method with same args as the $ctor(s). This will allow the
// class to be instantiated via the new operator.
foreach(TokenDeclSDType sdType in tokenScript.sdSrcTypesValues)
{
if(sdType is not TokenDeclSDTypeClass sdtClass)
continue;
// See if the class as it stands would be able to fill every slot of its vtable.
bool[] filled = new bool[sdtClass.numVirtFuncs];
int numFilled = 0;
for(TokenDeclSDTypeClass sdtc = sdtClass; sdtc != null; sdtc = sdtc.extends)
{
foreach(TokenDeclVar tdf in sdtc.members)
{
if((tdf.retType != null) && (tdf.vTableIndex >= 0) && ((tdf.sdtFlags & ScriptReduce.SDT_ABSTRACT) == 0))
{
if(!filled[tdf.vTableIndex])
{
filled[tdf.vTableIndex] = true;
numFilled++;
}
}
}
}
// If so, define a static class.$new() method for every constructor defined for the class.
// Give it the same access (private/protected/public) as the script declared for the constructor.
// Note that the reducer made sure there is at least a default constructor for every class.
if(numFilled >= sdtClass.numVirtFuncs)
{
List<TokenDeclVar> newobjDeclFuncs = new ();
foreach(TokenDeclVar ctorDeclFunc in sdtClass.members)
{
if((ctorDeclFunc.funcNameSig != null) && ctorDeclFunc.funcNameSig.val.StartsWith("$ctor("))
{
TokenDeclVar newobjDeclFunc = DefineNewobjFunc(ctorDeclFunc);
newobjDeclFuncs.Add(newobjDeclFunc);
}
}
foreach(TokenDeclVar newobjDeclFunc in newobjDeclFuncs)
{
sdtClass.members.AddEntry(newobjDeclFunc);
}
}
}
// Write fixed portion of object file.
objFileWriter.Write(OBJECT_CODE_MAGIC.ToCharArray());
objFileWriter.Write(COMPILED_VERSION_VALUE);
objFileWriter.Write(sourceHash);
glblSizes.WriteToFile(objFileWriter);
objFileWriter.Write(nStates);
for(int i = 0; i < nStates; i++)
{
objFileWriter.Write(stateNames[i]);
}
// For debugging, we also write out global variable array slot assignments.
foreach(TokenDeclVar declVar in tokenScript.variablesStack)
{
if(declVar.retType == null)
{
WriteOutGblAssignment("", declVar);
}
}
foreach(TokenDeclSDType sdType in tokenScript.sdSrcTypesValues)
{
if(sdType is not TokenDeclSDTypeClass sdtClass)
continue;
foreach(TokenDeclVar declVar in sdtClass.members)
{
if((declVar.sdtFlags & ScriptReduce.SDT_STATIC) != 0)
{
WriteOutGblAssignment(sdtClass.longName.val + ".", declVar);
}
}
}
objFileWriter.Write("");
// Write out script-defined types.
foreach(TokenDeclSDType sdType in tokenScript.sdSrcTypesValues)
{
objFileWriter.Write(sdType.longName.val);
sdType.WriteToFile(objFileWriter);
}
objFileWriter.Write("");
// Output function headers then bodies.
// Do all headers first in case bodies do forward references.
// Do both global functions, script-defined class static methods and
// script-defined instance methods, as we handle the differences
// during compilation of the functions/methods themselves.
// headers
foreach(TokenDeclVar declFunc in tokenScript.variablesStack)
{
if(declFunc.retType != null)
GenerateMethodHeader(declFunc);
}
foreach(TokenDeclSDType sdType in tokenScript.sdSrcTypesValues)
{
if (sdType is TokenDeclSDTypeClass sdtClass)
{
foreach (TokenDeclVar declFunc in sdtClass.members)
{
if ((declFunc.retType != null) && ((declFunc.sdtFlags & ScriptReduce.SDT_ABSTRACT) == 0))
GenerateMethodHeader(declFunc);
}
}
}
// now bodies
foreach(TokenDeclVar declFunc in tokenScript.variablesStack)
{
if(declFunc.retType != null)
GenerateMethodBody(declFunc);
}
foreach(TokenDeclSDType sdType in tokenScript.sdSrcTypesValues)
{
if (sdType is TokenDeclSDTypeClass sdtClass)
{
foreach (TokenDeclVar declFunc in sdtClass.members)
{
if ((declFunc.retType != null) && ((declFunc.sdtFlags & ScriptReduce.SDT_ABSTRACT) == 0))
GenerateMethodBody(declFunc);
}
}
}
// Output default state event handler functions.
// Each event handler is a private static method named 'default <eventname>'.
// Splice in a default state_entry() handler if none defined so we can init global vars.
TokenDeclVar defaultStateEntry = tokenScript.defaultState.body.eventFuncs;
while(defaultStateEntry != null)
{
if("state_entry()".Equals(defaultStateEntry.funcNameSig.val))
break;
defaultStateEntry = (TokenDeclVar)defaultStateEntry.nextToken;
}
if (defaultStateEntry == null)
{
defaultStateEntry = new TokenDeclVar(tokenScript.defaultState.body, null, tokenScript)
{
name = new TokenName(tokenScript.defaultState.body, "state_entry"),
retType = new TokenTypeVoid(tokenScript.defaultState.body),
argDecl = new TokenArgDecl(tokenScript.defaultState.body),
body = new TokenStmtBlock(tokenScript.defaultState.body)
};
defaultStateEntry.body.function = defaultStateEntry;
defaultStateEntry.nextToken = tokenScript.defaultState.body.eventFuncs;
tokenScript.defaultState.body.eventFuncs = defaultStateEntry;
}
GenerateStateEventHandlers("default", tokenScript.defaultState.body);
// Output script-defined state event handler methods.
// Each event handler is a private static method named <statename> <eventname>
foreach(KeyValuePair<string, TokenDeclState> kvp in tokenScript.states)
{
TokenDeclState declState = kvp.Value;
GenerateStateEventHandlers(declState.name.val, declState.body);
}
ScriptObjWriter.TheEnd(objFileWriter);
}
/**
* @brief Write out what slot was assigned for a global or sdtclass static variable.
* Constants, functions, instance fields, methods, properties do not have slots in the global variables arrays.
*/
private void WriteOutGblAssignment(string pfx, TokenDeclVar declVar)
{
if(!declVar.constant && (declVar.retType == null) && (declVar.getProp == null) && (declVar.setProp == null))
{
objFileWriter.Write(pfx + declVar.name.val); // string
objFileWriter.Write(declVar.vTableArray.Name); // string
objFileWriter.Write(declVar.vTableIndex); // int
}
}
/**
* @brief generate event handler code
* Writes out a function definition for each state handler
* named <statename> <eventname>
*
* However, each has just 'XMRInstance __sw' as its single argument
* and each of its user-visible argments is extracted from __sw.ehArgs[].
*
* So we end up generating something like this:
*
* private static void <statename> <eventname>(XMRInstance __sw)
* {
* <typeArg0> <nameArg0> = (<typeArg0>)__sw.ehArgs[0];
* <typeArg1> <nameArg1> = (<typeArg1>)__sw.ehArgs[1];
*
* ... script code ...
* }
*
* The continuations code assumes there will be no references to ehArgs[]
* after the first call to CheckRun() as CheckRun() makes no attempt to
* serialize the ehArgs[] array, as doing so would be redundant. Any values
* from ehArgs[] that are being used will be in local stack variables and
* thus preserved that way.
*/
private void GenerateStateEventHandlers(string statename, TokenStateBody body)
{
Dictionary<string, TokenDeclVar> statehandlers = new ();
for(Token t = body.eventFuncs; t != null; t = t.nextToken)
{
TokenDeclVar tdv = (TokenDeclVar)t;
string eventname = tdv.GetSimpleName();
if(statehandlers.ContainsKey(eventname))
{
ErrorMsg(tdv, "event handler " + eventname + " already defined for state " + statename);
}
else
{
statehandlers.Add(eventname, tdv);
GenerateEventHandler(statename, tdv);
}
}
}
private void GenerateEventHandler(string statename, TokenDeclVar declFunc)
{
string eventname = declFunc.GetSimpleName();
TokenArgDecl argDecl = declFunc.argDecl;
// Make sure event handler name is valid and that number and type of arguments is correct.
// Apparently some scripts exist with fewer than correct number of args in their declaration
// so allow for that. It is ok because the handlers are called with the arguments in an
// object[] array, and we just won't access the missing argments in the vector. But the
// specified types must match one of the prototypes in legalEventHandlers.
TokenDeclVar protoDeclFunc = legalEventHandlers.FindExact(eventname, argDecl.types);
if(protoDeclFunc == null)
{
ErrorMsg(declFunc, "unknown event handler " + eventname + argDecl.GetArgSig());
return;
}
// Output function header.
// They just have the XMRInstAbstract pointer as the one argument.
string functionName = statename + " " + eventname;
_ilGen = new ScriptObjWriter(tokenScript,
functionName,
typeof(void),
instanceTypeArg,
instanceNameArg,
objFileWriter);
StartFunctionBody(declFunc);
// Create a temp to hold XMRInstanceSuperType version of arg 0.
instancePointer = ilGen.DeclareLocal(xmrInstSuperType, "__xmrinst");
ilGen.Emit(declFunc, OpCodes.Ldarg_0);
ilGen.Emit(declFunc, OpCodes.Castclass, xmrInstSuperType);
ilGen.Emit(declFunc, OpCodes.Stloc, instancePointer);
if (!"$globalvarinit()".Equals(curDeclFunc.fullName))
{
PushXMRInst();
ilGen.Emit(curDeclFunc, OpCodes.Ldfld, heapUsedFieldInfo);
curHeapSize = ilGen.DeclareLocal(typeof(int), "__curHeap");
ilGen.Emit(curDeclFunc, OpCodes.Stloc, curHeapSize);
}
// Output args as variable definitions and initialize each from __sw.ehArgs[].
// If the script writer goofed, the typecast will complain.
for(int i = 0; i < argDecl.vars.Length; i++)
{
// Say that the argument variable is going to be located in a local var.
TokenDeclVar argVar = argDecl.vars[i];
TokenType argTokType = argVar.type;
CompValuLocalVar local = new (argTokType, argVar.name.val, this);
argVar.location = local;
// Copy from the ehArgs[i] element to the temp var.
// Cast as needed, there is a lot of craziness like OpenMetaverse.Quaternion.
local.PopPre(this, argVar.name);
PushXMRInst(); // instance
ilGen.Emit(declFunc, OpCodes.Ldfld, ehArgsFieldInfo); // instance.ehArgs (array of objects)
ilGen.Emit(declFunc, OpCodes.Ldc_I4, i); // array index = i
ilGen.Emit(declFunc, OpCodes.Ldelem, typeof(object)); // select the argument we want
TokenType stkTokType = tokenTypeObj; // stack has a type 'object' on it now
Type argSysType = argTokType.ToSysType(); // this is the type the script expects
if (argSysType == typeof(int))
{ // LSL_Integer/int -> int
ilGen.Emit(declFunc, OpCodes.Call, ehArgUnwrapInteger);
stkTokType = tokenTypeInt; // stack has a type 'int' on it now
}
else if (argSysType == typeof(string))
{ // LSL_Key/LSL_String/string -> string
ilGen.Emit(declFunc, OpCodes.Call, ehArgUnwrapString);
stkTokType = tokenTypeStr; // stack has a type 'string' on it now
}
else if (argSysType == typeof(double))
{ // LSL_Float/double -> double
ilGen.Emit(declFunc, OpCodes.Call, ehArgUnwrapFloat);
stkTokType = tokenTypeFlt; // stack has a type 'double' on it now
}
else if (argSysType == typeof(LSL_Vector))
{ // OpenMetaverse.Vector3/LSL_Vector -> LSL_Vector
ilGen.Emit(declFunc, OpCodes.Call, ehArgUnwrapVector);
stkTokType = tokenTypeVec; // stack has a type 'LSL_Vector' on it now
}
else if (argSysType == typeof(LSL_List))
{ // LSL_List -> LSL_List
TypeCast.CastTopOfStack(this, argVar.name, stkTokType, argTokType, true);
stkTokType = argTokType; // stack has a type 'LSL_List' on it now
}
else if (argSysType == typeof(LSL_Rotation))
{ // OpenMetaverse.Quaternion/LSL_Rotation -> LSL_Rotation
ilGen.Emit(declFunc, OpCodes.Call, ehArgUnwrapRotation);
stkTokType = tokenTypeRot; // stack has a type 'LSL_Rotation' on it now
}
local.PopPost(this, argVar.name, stkTokType); // pop stack type into argtype
}
// Output code for the statements and clean up.
GenerateFuncBody();
}
/**
* @brief generate header for an arbitrary script-defined global function.
* @param declFunc = function being defined
*/
private void GenerateMethodHeader(TokenDeclVar declFunc)
{
curDeclFunc = declFunc;
// Make up array of all argument types as seen by the code generator.
// We splice in XMRInstanceSuperType or XMRSDTypeClObj for the first
// arg as the function itself is static, followed by script-visible
// arg types.
TokenArgDecl argDecl = declFunc.argDecl;
int nArgs = argDecl.vars.Length;
Type[] argTypes = new Type[nArgs + 1];
string[] argNames = new string[nArgs + 1];
if(IsSDTInstMethod())
{
argTypes[0] = typeof(XMRSDTypeClObj);
argNames[0] = "$sdtthis";
}
else
{
argTypes[0] = xmrInstSuperType;
argNames[0] = "$xmrthis";
}
for(int i = 0; i < nArgs; i++)
{
argTypes[i + 1] = argDecl.vars[i].type.ToSysType();
argNames[i + 1] = argDecl.vars[i].name.val;
}
// Set up entrypoint.
string objCodeName = declFunc.GetObjCodeName();
declFunc.ilGen = new ScriptObjWriter(tokenScript,
objCodeName,
declFunc.retType.ToSysType(),
argTypes,
argNames,
objFileWriter);
// This says how to generate a call to the function and to get a delegate.
declFunc.location = new CompValuGlobalMeth(declFunc);
curDeclFunc = null;
}
/**
* @brief generate code for an arbitrary script-defined function.
* @param name = name of the function
* @param argDecl = argument declarations
* @param body = function's code body
*/
private void GenerateMethodBody(TokenDeclVar declFunc)
{
if ("$globalvarinit()".Equals(declFunc.fullName))
{
if(declFunc.body?.statements == null)
return;
}
// Set up code generator for the function's contents.
_ilGen = declFunc.ilGen;
StartFunctionBody(declFunc);
// Create a temp to hold XMRInstanceSuperType version of arg 0.
// For most functions, arg 0 is already XMRInstanceSuperType.
// But for script-defined class instance methods, arg 0 holds
// the XMRSDTypeClObj pointer and so we read the XMRInstAbstract
// pointer from its XMRSDTypeClObj.xmrInst field then cast it to
// XMRInstanceSuperType.
if (IsSDTInstMethod())
{
instancePointer = ilGen.DeclareLocal(xmrInstSuperType, "__xmrinst");
ilGen.Emit(declFunc, OpCodes.Ldarg_0);
ilGen.Emit(declFunc, OpCodes.Ldfld, sdtXMRInstFieldInfo);
ilGen.Emit(declFunc, OpCodes.Castclass, xmrInstSuperType);
ilGen.Emit(declFunc, OpCodes.Stloc, instancePointer);
}
if (!("$globalvarinit()".Equals(declFunc.fullName)))
{
PushXMRInst();
ilGen.Emit(curDeclFunc, OpCodes.Ldfld, heapUsedFieldInfo);
curHeapSize = ilGen.DeclareLocal(typeof(int), "__curHeap");
ilGen.Emit(curDeclFunc, OpCodes.Stloc, curHeapSize);
}
// Define location of all script-level arguments so script body can access them.
// The argument indices need to have +1 added to them because XMRInstance or
// XMRSDTypeClObj is spliced in at arg 0.
TokenArgDecl argDecl = declFunc.argDecl;
for(int i = 0; i < argDecl.vars.Length; i++)
{
TokenDeclVar argVar = argDecl.vars[i];
argVar.location = new CompValuArg(argVar.type, i + 1);
}
// Output code for the statements and clean up.
GenerateFuncBody();
}
private void StartFunctionBody(TokenDeclVar declFunc)
{
// Start current function being processed.
// Set 'mightGetHere' as the code at the top is always executed.
instancePointer = null;
mightGetHere = true;
curBreakTarg = null;
curContTarg = null;
curDeclFunc = declFunc;
// Start generating code.
((ScriptObjWriter)ilGen).BegMethod();
}
/**
* @brief Define function for a script-defined type's <typename>.$new(<argsig>) method.
* See GenerateStmtNewobj() for more info.
*/
private TokenDeclVar DefineNewobjFunc(TokenDeclVar ctorDeclFunc)
{
// Set up 'static classname $new(params-same-as-ctor) { }'.
TokenDeclVar newobjDeclFunc = new (ctorDeclFunc, null, tokenScript);
newobjDeclFunc.name = new TokenName(newobjDeclFunc, "$new");
newobjDeclFunc.retType = ctorDeclFunc.sdtClass.MakeRefToken(newobjDeclFunc);
newobjDeclFunc.argDecl = ctorDeclFunc.argDecl;
newobjDeclFunc.sdtClass = ctorDeclFunc.sdtClass;
newobjDeclFunc.sdtFlags = ScriptReduce.SDT_STATIC | ctorDeclFunc.sdtFlags;
// Declare local variable named '$objptr' in a frame just under
// what the '$new(...)' function's arguments are declared in.
TokenDeclVar objptrVar = new (newobjDeclFunc, newobjDeclFunc, tokenScript)
{
type = newobjDeclFunc.retType,
name = new TokenName(newobjDeclFunc, "$objptr")
};
VarDict newFrame = new (false)
{
outerVarDict = ctorDeclFunc.argDecl.varDict
};
newFrame.AddEntry(objptrVar);
// Set up '$objptr.$ctor'
TokenLValName objptrLValName = new (objptrVar.name, newFrame);
// ref a var by giving its name
TokenLValIField objptrDotCtor = new (newobjDeclFunc)
{
baseRVal = objptrLValName, // '$objptr'
fieldName = ctorDeclFunc.name // '.' '$ctor'
}; // an instance member reference
// Set up '$objptr.$ctor(arglist)' call for use in the '$new(...)' body.
// Copy the arglist from the constructor declaration so triviality
// processing will pick the correct overloaded constructor.
TokenRValCall callCtorRVal = new (newobjDeclFunc)
{
meth = objptrDotCtor // calling $objptr.$ctor()
}; // doing a call of some sort
TokenDeclVar[] argList = newobjDeclFunc.argDecl.vars; // get args $new() was declared with
callCtorRVal.nArgs = argList.Length; // ...that is nArgs we are passing to $objptr.$ctor()
for(int i = argList.Length; --i >= 0;)
{
TokenDeclVar arg = argList[i]; // find out about one of the args
TokenLValName argLValName = new (arg.name, ctorDeclFunc.argDecl.varDict)
{
// pass arg of that name to $objptr.$ctor()
nextToken = callCtorRVal.args // link to list of args passed to $objptr.$ctor()
};
callCtorRVal.args = argLValName;
}
// Set up a funky call to the constructor for the code body.
// This will let code generator know there is some craziness.
// See GenerateStmtNewobj().
//
// This is in essence:
// {
// classname $objptr = newobj (classname);
// $objptr.$ctor (...);
// return $objptr;
// }
TokenStmtNewobj newobjStmtBody = new (ctorDeclFunc)
{
objptrVar = objptrVar,
rValCall = callCtorRVal
};
// Link that code as the body of the function.
newobjDeclFunc.body = new TokenStmtBlock(ctorDeclFunc)
{
statements = newobjStmtBody
};
// Say the function calls '$objptr.$ctor(arglist)' so we will inherit ctor's triviality.
newobjDeclFunc.unknownTrivialityCalls.AddLast(callCtorRVal);
return newobjDeclFunc;
}
private class TokenStmtNewobj: TokenStmt
{
public TokenDeclVar objptrVar;
public TokenRValCall rValCall;
public TokenStmtNewobj(Token original) : base(original) { }
}
/**
* @brief Output function body (either event handler or script-defined method).
*/
private void GenerateFuncBody()
{
// We want to know if the function's code is trivial, ie,
// if it doesn't have anything that might be an infinite
// loop and that is doesn't call anything that might have
// an infinite loop. If it is, we don't need any CheckRun()
// stuff or any of the frame save/restore stuff.
bool isTrivial = curDeclFunc.IsFuncTrivial(this);
bool doheap = curDeclFunc.fullName != "$globalvarinit()";
// Clear list of all call labels.
// A call label is inserted just before every call that can possibly
// call CheckRun(), including any direct calls to CheckRun().
// Then, when restoring stack, we can just switch to this label to
// resume at the correct spot.
actCallLabels.Clear();
allCallLabels.Clear();
openCallLabel = null;
// Alloc stack space for local vars.
int stackframesize = AllocLocalVarStackSpace();
// Include argument variables in stack space for this frame.
foreach(TokenType tokType in curDeclFunc.argDecl.types)
{
stackframesize += LocalVarStackSize(tokType);
}
// Any return statements inside function body jump to this label
// after putting return value in __retval.
retLabel = ilGen.DefineLabel("__retlbl");
retValue = null;
if(curDeclFunc.retType is not TokenTypeVoid)
{
retValue = ilGen.DeclareLocal(curDeclFunc.retType.ToSysType(), "__retval");
}
// Output:
// int __mainCallNo = -1;
// instance.m_StackLeft -= stackframesize;
// try {
// if (instance.callMode != CallMode_NORMAL) goto __cmRestore;
actCallNo = null;
ScriptMyLabel cmRestore = null;
if (!isTrivial)
{
actCallNo = ilGen.DeclareLocal(typeof(int), "__mainCallNo");
SetCallNo(curDeclFunc, actCallNo, -1);
PushXMRInst();
ilGen.Emit(curDeclFunc, OpCodes.Dup);
ilGen.Emit(curDeclFunc, OpCodes.Ldfld, stackLeftFieldInfo);
ilGen.Emit(curDeclFunc, OpCodes.Ldc_I4, stackframesize);
ilGen.Emit(curDeclFunc, OpCodes.Sub);
ilGen.Emit(curDeclFunc, OpCodes.Stfld, stackLeftFieldInfo);
cmRestore = ilGen.DefineLabel("__cmRestore");
ilGen.BeginExceptionBlock();
PushXMRInst();
ilGen.Emit(curDeclFunc, OpCodes.Ldfld, ScriptCodeGen.callModeFieldInfo);
ilGen.Emit(curDeclFunc, OpCodes.Ldc_I4, XMRInstAbstract.CallMode_NORMAL);
ilGen.Emit(curDeclFunc, OpCodes.Bne_Un, cmRestore);
}
// Splice in the code optimizer for the body of the function.
ScriptCollector collector = new ((ScriptObjWriter)ilGen);
_ilGen = collector;
// If this is the default state_entry() handler, output code to set all global
// variables to their initial values. Note that every script must have a
// default state_entry() handler, we provide one if the script doesn't explicitly
// define one.
string methname = ilGen.methName;
if(methname == "default state_entry")
{
TokenDeclVar gviFunc = tokenScript.globalVarInit;
bool dogblinitcheck = gviFunc.body.statements != null;
if(!dogblinitcheck)
{
foreach (TokenDeclSDType sdType in tokenScript.sdSrcTypesValues)
{
if (sdType is TokenDeclSDTypeClass sdTypeClass)
{
TokenDeclVar sfiFunc = sdTypeClass.staticFieldInit;
if ((sfiFunc is not null) && (sfiFunc.body.statements is not null))
{
dogblinitcheck = true;
break;
}
}
}
}
if (dogblinitcheck)
{
// generate if (!doGblInit) goto skipGblInit;
ScriptMyLabel skipGblInitLabel = ilGen.DefineLabel("__skipGblInit");
PushXMRInst(); // instance
ilGen.Emit(curDeclFunc, OpCodes.Ldfld, doGblInitFieldInfo); // instance.doGblInit
ilGen.Emit(curDeclFunc, OpCodes.Brfalse, skipGblInitLabel);
// $globalvarinit();
if(gviFunc.body.statements != null)
{
gviFunc.location.CallPre(this, gviFunc);
gviFunc.location.CallPost(this, gviFunc);
}
// various $staticfieldinit();
foreach(TokenDeclSDType sdType in tokenScript.sdSrcTypesValues)
{
if(sdType is TokenDeclSDTypeClass sdTypeClass)
{
TokenDeclVar sfiFunc = sdTypeClass.staticFieldInit;
if((sfiFunc is not null) && (sfiFunc.body.statements is not null))
{
sfiFunc.location.CallPre(this, sfiFunc);
sfiFunc.location.CallPost(this, sfiFunc);
}
}
}
// doGblInit = 0;
PushXMRInst(); // instance
ilGen.Emit(curDeclFunc, OpCodes.Ldc_I4_0);
ilGen.Emit(curDeclFunc, OpCodes.Stfld, doGblInitFieldInfo); // instance.doGblInit
//skipGblInit:
ilGen.MarkLabel(skipGblInitLabel);
}
}
// If this is a script-defined type constructor, call the base constructor and call
// this class's $instfieldinit() method to initialize instance fields.
if((curDeclFunc.sdtClass != null) && curDeclFunc.funcNameSig.val.StartsWith("$ctor("))
{
if(curDeclFunc.baseCtorCall != null)
{
GenerateFromRValCall(curDeclFunc.baseCtorCall);
}
TokenDeclVar ifiFunc = ((TokenDeclSDTypeClass)curDeclFunc.sdtClass).instFieldInit;
if(ifiFunc.body.statements != null)
{
CompValu thisCompValu = new CompValuArg(ifiFunc.sdtClass.MakeRefToken(ifiFunc), 0);
CompValu ifiFuncLocn = new CompValuInstMember(ifiFunc, thisCompValu, true);
ifiFuncLocn.CallPre(this, ifiFunc);
ifiFuncLocn.CallPost(this, ifiFunc);
}
}
// See if time to suspend in case they are doing a loop with recursion.
if(!isTrivial)
EmitCallCheckRun(curDeclFunc, true);
// Output code body.
GenerateStmtBlock(curDeclFunc.body);
/*
if (doheap)
{
PushXMRInst();
ilGen.Emit(curDeclFunc, OpCodes.Ldloc, curHeapSize);
ilGen.Emit(curDeclFunc, OpCodes.Stfld, heapUsedFieldInfo);
}
*/
// If code falls through to this point, means they are missing
// a return statement. And that is legal only if the function
// returns 'void'.
if (mightGetHere)
{
if(curDeclFunc.retType is not TokenTypeVoid)
{
ErrorMsg(curDeclFunc.body, "missing final return statement");
}
ilGen.Emit(curDeclFunc, OpCodes.Leave, retLabel);
}
// End of the code to be optimized.
// Do optimizations then write it all out to object file.
// After this, all code gets written directly to object file.
// Optimization must be completed before we scan the allCallLabels
// list below to look for active locals and temps.
collector.Optimize();
_ilGen = collector.WriteOutAll();
List<ScriptMyLocal> activeTemps = null;
if (!isTrivial)
{
// Build list of locals and temps active at all the call labels.
activeTemps = new List<ScriptMyLocal>();
foreach (CallLabel cl in allCallLabels)
{
foreach (ScriptMyLocal lcl in cl.callLabel.whereAmI.localsReadBeforeWritten)
{
if (!activeTemps.Contains(lcl))
{
activeTemps.Add(lcl);
}
}
}
if(doheap)
activeTemps.Add(curHeapSize);
// Output code to restore the args, locals and temps then jump to
// the call label that we were interrupted at.
ilGen.MarkLabel(cmRestore);
GenerateFrameRestoreCode(activeTemps);
}
// Output epilog that saves stack frame state if CallMode_SAVE.
//
// finally {
// instance.m_StackLeft += stackframesize;
// if (instance.callMode != CallMode_SAVE) goto __endFin;
// GenerateFrameCaptureCode();
// __endFin:
// }
if(!isTrivial)
{
ilGen.BeginFinallyBlock();
PushXMRInst();
ilGen.Emit(curDeclFunc, OpCodes.Dup);
ilGen.Emit(curDeclFunc, OpCodes.Ldfld, stackLeftFieldInfo);
ilGen.Emit(curDeclFunc, OpCodes.Ldc_I4, stackframesize);
ilGen.Emit(curDeclFunc, OpCodes.Add);
ilGen.Emit(curDeclFunc, OpCodes.Stfld, stackLeftFieldInfo);
ScriptMyLabel endFin = ilGen.DefineLabel("__endFin");
PushXMRInst();
ilGen.Emit(curDeclFunc, OpCodes.Ldfld, callModeFieldInfo);
ilGen.Emit(curDeclFunc, OpCodes.Ldc_I4, XMRInstAbstract.CallMode_SAVE);
ilGen.Emit(curDeclFunc, OpCodes.Bne_Un, endFin);
GenerateFrameCaptureCode(activeTemps);
ilGen.MarkLabel(endFin);
ilGen.Emit(curDeclFunc, OpCodes.Endfinally);
ilGen.EndExceptionBlock();
}
// Output the 'real' return opcode.
// push return value
ilGen.MarkLabel(retLabel);
if (doheap)
{
PushXMRInst();
ilGen.Emit(curDeclFunc, OpCodes.Ldloc, curHeapSize);
ilGen.Emit(curDeclFunc, OpCodes.Stfld, heapUsedFieldInfo);
}
if (curDeclFunc.retType is not TokenTypeVoid)
{
ilGen.Emit(curDeclFunc, OpCodes.Ldloc, retValue);
}
ilGen.Emit(curDeclFunc, OpCodes.Ret);
retLabel = null;
retValue = null;
// No more instructions for this method.
((ScriptObjWriter)ilGen).EndMethod();
_ilGen = null;
// Not generating function code any more.
curBreakTarg = null;
curContTarg = null;
curDeclFunc = null;
}
/**
* @brief Allocate stack space for all local variables, regardless of
* which { } statement block they are actually defined in.
* @returns approximate stack frame size
*/
private int AllocLocalVarStackSpace()
{
int stackframesize = 64; // RIP, RBX, RBP, R12..R15, one extra
foreach(TokenDeclVar localVar in curDeclFunc.localVars)
{
// Skip all 'constant' vars as they were handled by the reducer.
if(localVar.constant)
continue;
// Get a stack location for the local variable.
localVar.location = new CompValuLocalVar(localVar.type, localVar.name.val, this);
// Stack size for the local variable.
stackframesize += LocalVarStackSize(localVar.type);
}
return stackframesize;
}
private static int LocalVarStackSize(TokenType tokType)
{
Type sysType = tokType.ToSysType();
return sysType.IsValueType ? System.Runtime.InteropServices.Marshal.SizeOf(sysType) : 8;
}
/**
* @brief Generate code to write all arguments and locals to the capture stack frame.
* This includes temp variables.
* We only need to save what is active at the point of callLabels through because
* those are the only points we will jump to on restore. This saves us from saving
* all the little temp vars we create.
* @param activeTemps = list of locals and temps that we care about, ie, which
* ones get restored by GenerateFrameRestoreCode().
*/
private void GenerateFrameCaptureCode(List<ScriptMyLocal> activeTemps)
{
// Compute total number of slots we need to save stuff.
// Assume we need to save all call arguments.
int nSaves = curDeclFunc.argDecl.vars.Length + activeTemps.Count;
// Output code to allocate a stack frame object with an object array.
// This also pushes the stack frame object on the instance.stackFrames list.
// It returns a pointer to the object array it allocated.
PushXMRInst();
ilGen.Emit(curDeclFunc, OpCodes.Ldstr, ilGen.methName);
GetCallNo(curDeclFunc, actCallNo);
ilGen.Emit(curDeclFunc, OpCodes.Ldc_I4, nSaves);
ilGen.Emit(curDeclFunc, OpCodes.Call, captureStackFrameMethodInfo);
// Copy arg values to object array, boxing as needed.
int i = 0;
foreach(TokenDeclVar argVar in curDeclFunc.argDecl.varDict)
{
ilGen.Emit(curDeclFunc, OpCodes.Dup);
ilGen.Emit(curDeclFunc, OpCodes.Ldc_I4, i);
argVar.location.PushVal(this, argVar.name, tokenTypeObj);
ilGen.Emit(curDeclFunc, OpCodes.Stelem_Ref);
i++;
}
// Copy local and temp values to object array, boxing as needed.
foreach(ScriptMyLocal lcl in activeTemps)
{
ilGen.Emit(curDeclFunc, OpCodes.Dup);
ilGen.Emit(curDeclFunc, OpCodes.Ldc_I4, i++);
ilGen.Emit(curDeclFunc, OpCodes.Ldloc, lcl);
Type t = lcl.type;
if(t == typeof(HeapTrackerList))
{
t = HeapTrackerList.GenPush(curDeclFunc, ilGen);
}
if(t == typeof(HeapTrackerObject))
{
t = HeapTrackerObject.GenPush(curDeclFunc, ilGen);
}
if(t == typeof(HeapTrackerString))
{
t = HeapTrackerString.GenPush(curDeclFunc, ilGen);
}
if(t.IsValueType)
{
ilGen.Emit(curDeclFunc, OpCodes.Box, t);
}
ilGen.Emit(curDeclFunc, OpCodes.Stelem_Ref);
}
ilGen.Emit(curDeclFunc, OpCodes.Pop);
}
/**
* @brief Generate code to restore all arguments and locals from the restore stack frame.
* This includes temp variables.
*/
private void GenerateFrameRestoreCode(List<ScriptMyLocal> activeTemps)
{
ScriptMyLocal objArray = ilGen.DeclareLocal(typeof(object[]), "__restObjArray");
// Output code to pop stack frame from instance.stackFrames.
// It returns a pointer to the object array that contains values to be restored.
PushXMRInst();
ilGen.Emit(curDeclFunc, OpCodes.Ldstr, ilGen.methName);
ilGen.Emit(curDeclFunc, OpCodes.Ldloca, actCallNo); // __mainCallNo
ilGen.Emit(curDeclFunc, OpCodes.Call, restoreStackFrameMethodInfo);
ilGen.Emit(curDeclFunc, OpCodes.Stloc, objArray);
// Restore argument values from object array, unboxing as needed.
// Although the caller has restored them to what it called us with, it's possible that this
// function has modified them since, so we need to do our own restore.
int i = 0;
foreach(TokenDeclVar argVar in curDeclFunc.argDecl.varDict)
{
CompValu argLoc = argVar.location;
argLoc.PopPre(this, argVar.name);
ilGen.Emit(curDeclFunc, OpCodes.Ldloc, objArray);
ilGen.Emit(curDeclFunc, OpCodes.Ldc_I4, i);
ilGen.Emit(curDeclFunc, OpCodes.Ldelem_Ref);
TypeCast.CastTopOfStack(this, argVar.name, tokenTypeObj, argLoc.type, true);
argLoc.PopPost(this, argVar.name);
i++;
}
// Restore local and temp values from object array, unboxing as needed.
foreach(ScriptMyLocal lcl in activeTemps)
{
Type t = lcl.type;
Type u = t;
if(t == typeof(HeapTrackerList))
u = typeof(LSL_List);
if(t == typeof(HeapTrackerObject))
u = typeof(object);
if(t == typeof(HeapTrackerString))
u = typeof(string);
if(u != t)
{
ilGen.Emit(curDeclFunc, OpCodes.Ldloc, lcl);
}
ilGen.Emit(curDeclFunc, OpCodes.Ldloc, objArray);
ilGen.Emit(curDeclFunc, OpCodes.Ldc_I4, i++);
ilGen.Emit(curDeclFunc, OpCodes.Ldelem_Ref);
if(u.IsValueType)
{
ilGen.Emit(curDeclFunc, OpCodes.Unbox_Any, u);
}
else if(u != typeof(object))
{
ilGen.Emit(curDeclFunc, OpCodes.Castclass, u);
}
if(u != t)
{
if(t == typeof(HeapTrackerList))
HeapTrackerList.GenRestore(curDeclFunc, ilGen);
if(t == typeof(HeapTrackerObject))
HeapTrackerObject.GenRestore(curDeclFunc, ilGen);
if(t == typeof(HeapTrackerString))
HeapTrackerString.GenRestore(curDeclFunc, ilGen);
}
else
{
ilGen.Emit(curDeclFunc, OpCodes.Stloc, lcl);
}
}
OutputCallNoSwitchStmt();
}
/**
* @brief Output a switch statement with a case for each possible
* value of whatever callNo is currently active, either
* __mainCallNo or one of the try/catch/finally's callNos.
*
* switch (callNo) {
* case 0: goto __call_0;
* case 1: goto __call_1;
* ...
* }
* throw new ScriptBadCallNoException (callNo);
*/
private void OutputCallNoSwitchStmt()
{
ScriptMyLabel[] callLabels = new ScriptMyLabel[actCallLabels.Count];
foreach(CallLabel cl in actCallLabels)
{
callLabels[cl.index] = cl.callLabel;
}
GetCallNo(curDeclFunc, actCallNo);
ilGen.Emit(curDeclFunc, OpCodes.Switch, callLabels);
GetCallNo(curDeclFunc, actCallNo);
ilGen.Emit(curDeclFunc, OpCodes.Newobj, scriptBadCallNoExceptionConstructorInfo);
ilGen.Emit(curDeclFunc, OpCodes.Throw);
}
/**
* @brief There is one of these per call that can possibly call CheckRun(),
* including direct calls to CheckRun().
* They mark points that the stack capture/restore code will save & restore to.
* All object-code level local vars active at the call label's point will
* be saved & restored.
*
* callNo = 5;
* __call_5:
* push call arguments from temps
* call SomethingThatCallsCheckRun()
*
* If SomethingThatCallsCheckRun() actually calls CheckRun(), our restore code
* will restore our args, locals & temps, then jump to __call_5, which will then
* call SomethingThatCallsCheckRun() again, which will restore its stuff likewise.
* When eventually the actual CheckRun() call is restored, it will turn off restore
* mode (by changing callMode from CallMode_RESTORE to CallMode_NORMAL) and return,
* allowing the code to run normally from that point.
*/
public class CallLabel
{
public int index; // sequential integer, starting at 0, within actCallLabels
// - used for the switch statement
public ScriptMyLabel callLabel; // the actual label token
public CallLabel(ScriptCodeGen scg, Token errorAt)
{
if(scg.openCallLabel != null)
throw new Exception("call label already open");
if(!scg.curDeclFunc.IsFuncTrivial(scg))
{
this.index = scg.actCallLabels.Count;
string name = "__call_" + index + "_" + scg.allCallLabels.Count;
// Make sure eval stack is empty because the frame capture/restore
// code expects such (restore switch stmt has an empty stack).
int depth = ((ScriptCollector)scg.ilGen).stackDepth.Count;
if(depth > 0)
{
// maybe need to call Trivialize()
throw new Exception("call label stack depth " + depth + " at " + errorAt.SrcLoc);
}
// Eval stack is empty so the restore code can handle it.
this.index = scg.actCallLabels.Count;
scg.actCallLabels.AddLast(this);
scg.allCallLabels.AddLast(this);
this.callLabel = scg.ilGen.DefineLabel(name);
scg.SetCallNo(errorAt, scg.actCallNo, this.index);
scg.ilGen.MarkLabel(this.callLabel);
}
scg.openCallLabel = this;
}
};
/**
* @brief generate code for an arbitrary statement.
*/
private void GenerateStmt(TokenStmt stmt)
{
errorMessageToken = stmt;
if(stmt is TokenDeclVar TokenDeclVarstmt)
{
GenerateDeclVar(TokenDeclVarstmt);
return;
}
if(stmt is TokenStmtBlock TokenStmtBlockstmt)
{
GenerateStmtBlock(TokenStmtBlockstmt);
return;
}
if(stmt is TokenStmtBreak TokenStmtBreakstmt)
{
GenerateStmtBreak(TokenStmtBreakstmt);
return;
}
if(stmt is TokenStmtCont TokenStmtContstmt)
{
GenerateStmtCont(TokenStmtContstmt);
return;
}
if(stmt is TokenStmtDo TokenStmtDostmt)
{
GenerateStmtDo(TokenStmtDostmt);
return;
}
if(stmt is TokenStmtFor TokenStmtForstmt)
{
GenerateStmtFor(TokenStmtForstmt);
return;
}
if(stmt is TokenStmtForEach TokenStmtForEachstmt)
{
GenerateStmtForEach(TokenStmtForEachstmt);
return;
}
if(stmt is TokenStmtIf TokenStmtIfstmt)
{
GenerateStmtIf(TokenStmtIfstmt);
return;
}
if(stmt is TokenStmtJump TokenStmtJumpstmt)
{
GenerateStmtJump(TokenStmtJumpstmt);
return;
}
if(stmt is TokenStmtLabel TokenStmtLabelstmt)
{
GenerateStmtLabel(TokenStmtLabelstmt);
return;
}
if(stmt is TokenStmtNewobj TokenStmtNewobjstmt)
{
GenerateStmtNewobj(TokenStmtNewobjstmt);
return;
}
if(stmt is TokenStmtNull)
{
return;
}
if(stmt is TokenStmtRet TokenStmtRetstmt)
{
GenerateStmtRet(TokenStmtRetstmt);
return;
}
if(stmt is TokenStmtRVal TokenStmtRValstmt)
{
GenerateStmtRVal(TokenStmtRValstmt);
return;
}
if(stmt is TokenStmtState TokenStmtStatestmt)
{
GenerateStmtState(TokenStmtStatestmt);
return;
}
if(stmt is TokenStmtSwitch TokenStmtSwitchstmt)
{
GenerateStmtSwitch(TokenStmtSwitchstmt);
return;
}
if(stmt is TokenStmtThrow TokenStmtThrowstmt)
{
GenerateStmtThrow(TokenStmtThrowstmt);
return;
}
if(stmt is TokenStmtTry TokenStmtTrystmt)
{
GenerateStmtTry(TokenStmtTrystmt);
return;
}
if(stmt is TokenStmtVarIniDef TokenStmtVarIniDefstmt)
{
GenerateStmtVarIniDef(TokenStmtVarIniDefstmt);
return;
}
if(stmt is TokenStmtWhile TokenStmtWhilestmt)
{
GenerateStmtWhile(TokenStmtWhilestmt);
return;
}
throw new Exception("unknown TokenStmt type " + stmt.GetType().ToString());
}
/**
* @brief generate statement block (ie, with braces)
*/
private void GenerateStmtBlock(TokenStmtBlock stmtBlock)
{
if(!mightGetHere)
return;
// Push new current statement block pointer for anyone who cares.
TokenStmtBlock oldStmtBlock = curStmtBlock;
curStmtBlock = stmtBlock;
// Output the statements that make up the block.
for(Token t = stmtBlock.statements; t != null; t = t.nextToken)
{
GenerateStmt((TokenStmt)t);
}
// Pop the current statement block.
curStmtBlock = oldStmtBlock;
}
/**
* @brief output code for a 'break' statement
*/
private void GenerateStmtBreak(TokenStmtBreak breakStmt)
{
if(!mightGetHere)
return;
// Make sure we are in a breakable situation.
if(curBreakTarg == null)
{
ErrorMsg(breakStmt, "not in a breakable situation");
return;
}
// Tell anyone who cares that the break target was actually used.
curBreakTarg.used = true;
// Output the instructions.
EmitJumpCode(curBreakTarg.label, curBreakTarg.block, breakStmt);
}
/**
* @brief output code for a 'continue' statement
*/
private void GenerateStmtCont(TokenStmtCont contStmt)
{
if(!mightGetHere)
return;
// Make sure we are in a contable situation.
if(curContTarg == null)
{
ErrorMsg(contStmt, "not in a continueable situation");
return;
}
// Tell anyone who cares that the continue target was actually used.
curContTarg.used = true;
// Output the instructions.
EmitJumpCode(curContTarg.label, curContTarg.block, contStmt);
}
/**
* @brief output code for a 'do' statement
*/
private void GenerateStmtDo(TokenStmtDo doStmt)
{
if(!mightGetHere)
return;
BreakContTarg oldBreakTarg = curBreakTarg;
BreakContTarg oldContTarg = curContTarg;
ScriptMyLabel loopLabel = ilGen.DefineLabel("doloop_" + doStmt.Unique);
curBreakTarg = new BreakContTarg(this, "dobreak_" + doStmt.Unique);
curContTarg = new BreakContTarg(this, "docont_" + doStmt.Unique);
ilGen.MarkLabel(loopLabel);
GenerateStmt(doStmt.bodyStmt);
if(curContTarg.used)
{
ilGen.MarkLabel(curContTarg.label);
mightGetHere = true;
}
if(mightGetHere)
{
EmitCallCheckRun(doStmt, false);
CompValu testRVal = GenerateFromRVal(doStmt.testRVal);
if(IsConstBoolExprTrue(testRVal))
{
// Unconditional looping, unconditional branch and
// say we never fall through to next statement.
ilGen.Emit(doStmt, OpCodes.Br, loopLabel);
mightGetHere = false;
}
else
{
// Conditional looping, test and brach back to top of loop.
testRVal.PushVal(this, doStmt.testRVal, tokenTypeBool);
ilGen.Emit(doStmt, OpCodes.Brtrue, loopLabel);
}
}
// If 'break' statement was used, output target label.
// And assume that since a 'break' statement was used, it's possible for the code to get here.
if(curBreakTarg.used)
{
ilGen.MarkLabel(curBreakTarg.label);
mightGetHere = true;
}
curBreakTarg = oldBreakTarg;
curContTarg = oldContTarg;
}
/**
* @brief output code for a 'for' statement
*/
private void GenerateStmtFor(TokenStmtFor forStmt)
{
if(!mightGetHere)
return;
BreakContTarg oldBreakTarg = curBreakTarg;
BreakContTarg oldContTarg = curContTarg;
ScriptMyLabel loopLabel = ilGen.DefineLabel("forloop_" + forStmt.Unique);
curBreakTarg = new BreakContTarg(this, "forbreak_" + forStmt.Unique);
curContTarg = new BreakContTarg(this, "forcont_" + forStmt.Unique);
if(forStmt.initStmt != null)
{
GenerateStmt(forStmt.initStmt);
}
ilGen.MarkLabel(loopLabel);
// See if we have a test expression that is other than a constant TRUE.
// If so, test it and conditionally branch to end if false.
if(forStmt.testRVal != null)
{
CompValu testRVal = GenerateFromRVal(forStmt.testRVal);
if(!IsConstBoolExprTrue(testRVal))
{
testRVal.PushVal(this, forStmt.testRVal, tokenTypeBool);
ilGen.Emit(forStmt, OpCodes.Brfalse, curBreakTarg.label);
curBreakTarg.used = true;
}
}
// Output loop body.
GenerateStmt(forStmt.bodyStmt);
// Here's where a 'continue' statement jumps to.
if(curContTarg.used)
{
ilGen.MarkLabel(curContTarg.label);
mightGetHere = true;
}
if(mightGetHere)
{
// After checking for excessive CPU time, output increment statement, if any.
EmitCallCheckRun(forStmt, false);
if(forStmt.incrRVal != null)
{
GenerateFromRVal(forStmt.incrRVal);
}
// Unconditional branch back to beginning of loop.
ilGen.Emit(forStmt, OpCodes.Br, loopLabel);
}
// If test needs label, output label for it to jump to.
// Otherwise, clear mightGetHere as we know loop never
// falls out the bottom.
mightGetHere = curBreakTarg.used;
if(mightGetHere)
{
ilGen.MarkLabel(curBreakTarg.label);
}
curBreakTarg = oldBreakTarg;
curContTarg = oldContTarg;
}
private void GenerateStmtForEach(TokenStmtForEach forEachStmt)
{
if(!mightGetHere)
return;
BreakContTarg oldBreakTarg = curBreakTarg;
BreakContTarg oldContTarg = curContTarg;
CompValu keyLVal = null;
CompValu valLVal = null;
CompValu arrayRVal = GenerateFromRVal(forEachStmt.arrayRVal);
if(forEachStmt.keyLVal != null)
{
keyLVal = GenerateFromLVal(forEachStmt.keyLVal);
if(keyLVal.type is not TokenTypeObject)
{
ErrorMsg(forEachStmt.arrayRVal, "must be object");
}
}
if(forEachStmt.valLVal != null)
{
valLVal = GenerateFromLVal(forEachStmt.valLVal);
if(valLVal.type is not TokenTypeObject)
{
ErrorMsg(forEachStmt.arrayRVal, "must be object");
}
}
if(arrayRVal.type is not TokenTypeArray)
{
ErrorMsg(forEachStmt.arrayRVal, "must be an array");
}
curBreakTarg = new BreakContTarg(this, "foreachbreak_" + forEachStmt.Unique);
curContTarg = new BreakContTarg(this, "foreachcont_" + forEachStmt.Unique);
CompValuTemp indexVar = new (new TokenTypeInt(forEachStmt), this);
ScriptMyLabel loopLabel = ilGen.DefineLabel("foreachloop_" + forEachStmt.Unique);
// indexVar = 0
ilGen.Emit(forEachStmt, OpCodes.Ldc_I4_0);
indexVar.Pop(this, forEachStmt);
ilGen.MarkLabel(loopLabel);
// key = array.__pub_index (indexVar);
// if (key == null) goto curBreakTarg;
if(keyLVal != null)
{
keyLVal.PopPre(this, forEachStmt.keyLVal);
arrayRVal.PushVal(this, forEachStmt.arrayRVal);
indexVar.PushVal(this, forEachStmt);
ilGen.Emit(forEachStmt, OpCodes.Call, xmrArrPubIndexMethod);
keyLVal.PopPost(this, forEachStmt.keyLVal);
keyLVal.PushVal(this, forEachStmt.keyLVal);
ilGen.Emit(forEachStmt, OpCodes.Brfalse, curBreakTarg.label);
curBreakTarg.used = true;
}
// val = array._pub_value (indexVar);
// if (val == null) goto curBreakTarg;
if(valLVal != null)
{
valLVal.PopPre(this, forEachStmt.valLVal);
arrayRVal.PushVal(this, forEachStmt.arrayRVal);
indexVar.PushVal(this, forEachStmt);
ilGen.Emit(forEachStmt, OpCodes.Call, xmrArrPubValueMethod);
valLVal.PopPost(this, forEachStmt.valLVal);
if(keyLVal == null)
{
valLVal.PushVal(this, forEachStmt.valLVal);
ilGen.Emit(forEachStmt, OpCodes.Brfalse, curBreakTarg.label);
curBreakTarg.used = true;
}
}
// indexVar ++;
indexVar.PushVal(this, forEachStmt);
ilGen.Emit(forEachStmt, OpCodes.Ldc_I4_1);
ilGen.Emit(forEachStmt, OpCodes.Add);
indexVar.Pop(this, forEachStmt);
// body statement
GenerateStmt(forEachStmt.bodyStmt);
// continue label
if(curContTarg.used)
{
ilGen.MarkLabel(curContTarg.label);
mightGetHere = true;
}
// call CheckRun()
if(mightGetHere)
{
EmitCallCheckRun(forEachStmt, false);
ilGen.Emit(forEachStmt, OpCodes.Br, loopLabel);
}
// break label
ilGen.MarkLabel(curBreakTarg.label);
mightGetHere = true;
curBreakTarg = oldBreakTarg;
curContTarg = oldContTarg;
}
/**
* @brief output code for an 'if' statement
* Braces are necessary because what may be one statement for trueStmt or elseStmt in
* the script may translate to more than one statement in the resultant C# code.
*/
private void GenerateStmtIf(TokenStmtIf ifStmt)
{
if(!mightGetHere)
return;
// Test condition and see if constant test expression.
CompValu testRVal = GenerateFromRVal(ifStmt.testRVal);
if (IsConstBoolExpr(testRVal, out bool constVal))
{
// Constant, output just either the true or else part.
if(constVal)
{
GenerateStmt(ifStmt.trueStmt);
}
else if(ifStmt.elseStmt != null)
{
GenerateStmt(ifStmt.elseStmt);
}
}
else if(ifStmt.elseStmt == null)
{
// This is an 'if' statement without an 'else' clause.
testRVal.PushVal(this, ifStmt.testRVal, tokenTypeBool);
ScriptMyLabel doneLabel = ilGen.DefineLabel("ifdone_" + ifStmt.Unique);
ilGen.Emit(ifStmt, OpCodes.Brfalse, doneLabel); // brfalse doneLabel
GenerateStmt(ifStmt.trueStmt); // generate true body code
ilGen.MarkLabel(doneLabel);
mightGetHere = true; // there's always a possibility of getting here
}
else
{
// This is an 'if' statement with an 'else' clause.
testRVal.PushVal(this, ifStmt.testRVal, tokenTypeBool);
ScriptMyLabel elseLabel = ilGen.DefineLabel("ifelse_" + ifStmt.Unique);
ilGen.Emit(ifStmt, OpCodes.Brfalse, elseLabel); // brfalse elseLabel
GenerateStmt(ifStmt.trueStmt); // generate true body code
bool trueMightGetHere = mightGetHere; // save whether or not true falls through
ScriptMyLabel doneLabel = ilGen.DefineLabel("ifdone_" + ifStmt.Unique);
ilGen.Emit(ifStmt, OpCodes.Br, doneLabel); // branch to done
ilGen.MarkLabel(elseLabel); // beginning of else code
mightGetHere = true; // the top of the else might be executed
GenerateStmt(ifStmt.elseStmt); // output else code
ilGen.MarkLabel(doneLabel); // where end of true clause code branches to
mightGetHere |= trueMightGetHere; // gets this far if either true or else falls through
}
}
/**
* @brief output code for a 'jump' statement
*/
private void GenerateStmtJump(TokenStmtJump jumpStmt)
{
if(!mightGetHere)
return;
// Make sure the target label is defined somewhere in the function.
if (!curDeclFunc.labels.TryGetValue(jumpStmt.label.val, out TokenStmtLabel stmtLabel))
{
ErrorMsg(jumpStmt, "undefined label " + jumpStmt.label.val);
return;
}
if (!stmtLabel.labelTagged)
{
stmtLabel.labelStruct = ilGen.DefineLabel("jump_" + stmtLabel.name.val);
stmtLabel.labelTagged = true;
}
// Emit instructions to do the jump.
EmitJumpCode(stmtLabel.labelStruct, stmtLabel.block, jumpStmt);
}
/**
* @brief Emit code to jump to a label
* @param target = label being jumped to
* @param targetsBlock = { ... } the label is defined in
*/
private void EmitJumpCode(ScriptMyLabel target, TokenStmtBlock targetsBlock, Token errorAt)
{
// Jumps never fall through.
mightGetHere = false;
// Find which block the target label is in. Must be in this or an outer block,
// no laterals allowed. And if we exit a try/catch block, use Leave instead of Br.
//
// jump lateral;
// {
// @lateral;
// }
bool useLeave = false;
TokenStmtBlock stmtBlock;
Stack<TokenStmtTry> finallyBlocksCalled = new ();
for(stmtBlock = curStmtBlock; stmtBlock != targetsBlock; stmtBlock = stmtBlock.outerStmtBlock)
{
if(stmtBlock == null)
{
ErrorMsg(errorAt, "no lateral jumps allowed");
return;
}
if(stmtBlock.isFinally)
{
ErrorMsg(errorAt, "cannot jump out of finally");
return;
}
if(stmtBlock.isTry || stmtBlock.isCatch)
useLeave = true;
if((stmtBlock.tryStmt != null) && (stmtBlock.tryStmt.finallyStmt != null))
{
finallyBlocksCalled.Push(stmtBlock.tryStmt);
}
}
// If popping through more than one finally block, we have to break it down for the stack
// capture and restore code, one finally block at a time.
//
// try {
// try {
// try {
// jump exit;
// } finally {
// llOwnerSay ("exiting inner");
// }
// } finally {
// llOwnerSay ("exiting middle");
// }
// } finally {
// llOwnerSay ("exiting outer");
// }
// @exit;
//
// try {
// try {
// try {
// jump intr2_exit; <<< gets its own tryNo call label so inner try knows where to restore to
// } finally {
// llOwnerSay ("exiting inner");
// }
// jump outtry2;
// @intr2_exit; jump intr1_exit; <<< gets its own tryNo call label so middle try knows where to restore to
// @outtry2;
// } finally {
// llOwnerSay ("exiting middle");
// }
// jump outtry1;
// @intr1_exit: jump exit; <<< gets its own tryNo call label so outer try knows where to restore to
// @outtry1;
// } finally {
// llOwnerSay ("exiting outer");
// }
// @exit;
int level = 0;
while(finallyBlocksCalled.Count > 1)
{
TokenStmtTry finallyBlock = finallyBlocksCalled.Pop();
string intername = "intr" + (++level) + "_" + target.name;
if (!finallyBlock.iLeaves.TryGetValue(intername, out IntermediateLeave iLeave))
{
iLeave = new IntermediateLeave
{
jumpIntoLabel = ilGen.DefineLabel(intername),
jumpAwayLabel = target
};
finallyBlock.iLeaves.Add(intername, iLeave);
}
target = iLeave.jumpIntoLabel;
}
// Finally output the branch/leave opcode.
// If using Leave, prefix with a call label in case the corresponding finally block
// calls CheckRun() and that CheckRun() captures the stack, it will have a point to
// restore to that will properly jump back into the finally block.
if(useLeave)
{
_ = new CallLabel(this, errorAt);
ilGen.Emit(errorAt, OpCodes.Leave, target);
openCallLabel = null;
}
else
{
ilGen.Emit(errorAt, OpCodes.Br, target);
}
}
/**
* @brief output code for a jump target label statement.
* If there are any backward jumps to the label, do a CheckRun() also.
*/
private void GenerateStmtLabel(TokenStmtLabel labelStmt)
{
if(!labelStmt.labelTagged)
{
labelStmt.labelStruct = ilGen.DefineLabel("jump_" + labelStmt.name.val);
labelStmt.labelTagged = true;
}
ilGen.MarkLabel(labelStmt.labelStruct);
if(labelStmt.hasBkwdRefs)
{
EmitCallCheckRun(labelStmt, false);
}
// We are going to say that the label falls through.
// It would be nice if we could analyze all referencing
// goto's to see if all of them are not used but we are
// going to assume that if the script writer put a label
// somewhere, it is probably going to be used.
mightGetHere = true;
}
/**
* @brief Generate code for a script-defined type's <typename>.$new(<argsig>) method.
* It is used to malloc the object and initialize it.
* It is defined as a script-defined type static method, so the object level
* method gets the XMRInstance pointer passed as arg 0, and the method is
* supposed to return the allocated and constructed XMRSDTypeClObj
* object pointer.
*/
private void GenerateStmtNewobj(TokenStmtNewobj newobjStmt)
{
// First off, malloc a new empty XMRSDTypeClObj object
// then call the XMRSDTypeClObj()-level constructor.
// Store the result in local var $objptr.
newobjStmt.objptrVar.location.PopPre(this, newobjStmt);
ilGen.Emit(newobjStmt, OpCodes.Ldarg_0);
ilGen.Emit(newobjStmt, OpCodes.Ldc_I4, curDeclFunc.sdtClass.sdTypeIndex);
ilGen.Emit(newobjStmt, OpCodes.Newobj, sdtClassConstructorInfo);
newobjStmt.objptrVar.location.PopPost(this, newobjStmt);
// Now call the script-level constructor.
// Pass the object pointer in $objptr as it's 'this' argument.
// The rest of the args are the script-visible args and are just copied from $new() call.
GenerateFromRValCall(newobjStmt.rValCall);
// Put object pointer in retval so it gets returned to caller.
newobjStmt.objptrVar.location.PushVal(this, newobjStmt);
ilGen.Emit(newobjStmt, OpCodes.Stloc, retValue);
// Exit the function like a return statement.
// And thus we don't fall through.
ilGen.Emit(newobjStmt, OpCodes.Leave, retLabel);
mightGetHere = false;
}
/**
* @brief output code for a return statement.
* @param retStmt = return statement token, including return value if any
*/
private void GenerateStmtRet(TokenStmtRet retStmt)
{
if(!mightGetHere)
return;
for(TokenStmtBlock stmtBlock = curStmtBlock; stmtBlock != null; stmtBlock = stmtBlock.outerStmtBlock)
{
if(stmtBlock.isFinally)
{
ErrorMsg(retStmt, "cannot return out of finally");
return;
}
}
if(curDeclFunc.retType is TokenTypeVoid)
{
if(retStmt.rVal != null)
{
ErrorMsg(retStmt, "function returns void, no value allowed");
return;
}
}
else
{
if(retStmt.rVal == null)
{
ErrorMsg(retStmt, "function requires return value type " + curDeclFunc.retType.ToString());
return;
}
CompValu rVal = GenerateFromRVal(retStmt.rVal);
rVal.PushVal(this, retStmt.rVal, curDeclFunc.retType);
ilGen.Emit(retStmt, OpCodes.Stloc, retValue);
}
// Use a OpCodes.Leave instruction to break out of any try { } blocks.
// All Leave's inside script-defined try { } need call labels (see GenerateStmtTry()).
bool brokeOutOfTry = false;
for(TokenStmtBlock stmtBlock = curStmtBlock; stmtBlock != null; stmtBlock = stmtBlock.outerStmtBlock)
{
if(stmtBlock.isTry)
{
brokeOutOfTry = true;
break;
}
}
if(brokeOutOfTry)
_ = new CallLabel(this, retStmt);
ilGen.Emit(retStmt, OpCodes.Leave, retLabel);
if(brokeOutOfTry)
openCallLabel = null;
// 'return' statements never fall through.
mightGetHere = false;
}
/**
* @brief the statement is just an expression, most likely an assignment or a ++ or -- thing.
*/
private void GenerateStmtRVal(TokenStmtRVal rValStmt)
{
if(!mightGetHere)
return;
GenerateFromRVal(rValStmt.rVal);
}
/**
* @brief generate code for a 'state' statement that transitions state.
* It sets the new state by throwing a ScriptChangeStateException.
*/
private void GenerateStmtState(TokenStmtState stateStmt)
{
if(!mightGetHere)
return;
int index = 0; // 'default' state
// Set new state value by throwing an exception.
// These exceptions aren't catchable by script-level try { } catch { }.
if ((stateStmt.state != null) && !stateIndices.TryGetValue(stateStmt.state.val, out index))
{
mightGetHere = false;
// do compile time error
ErrorMsg (stateStmt, "undefined state " + stateStmt.state.val);
throw new Exception("undefined state " + stateStmt.state.val);
// before we did throw an exception only at runtime.
//ilGen.Emit(stateStmt, OpCodes.Ldstr, stateStmt.state.val);
//ilGen.Emit(stateStmt, OpCodes.Newobj, scriptUndefinedStateExceptionConstructorInfo);
}
else
{
ilGen.Emit(stateStmt, OpCodes.Ldc_I4, index); // new state's index
ilGen.Emit(stateStmt, OpCodes.Newobj, scriptChangeStateExceptionConstructorInfo);
}
ilGen.Emit(stateStmt, OpCodes.Throw);
// 'state' statements never fall through.
mightGetHere = false;
}
/**
* @brief output code for a 'switch' statement
*/
private void GenerateStmtSwitch(TokenStmtSwitch switchStmt)
{
if(!mightGetHere)
return;
// Output code to calculate index.
CompValu testRVal = GenerateFromRVal(switchStmt.testRVal);
// Generate code based on string or integer index.
if((testRVal.type is TokenTypeKey) || (testRVal.type is TokenTypeStr))
GenerateStmtSwitchStr(testRVal, switchStmt);
else
GenerateStmtSwitchInt(testRVal, switchStmt);
}
private void GenerateStmtSwitchInt(CompValu testRVal, TokenStmtSwitch switchStmt)
{
testRVal.PushVal(this, switchStmt.testRVal, tokenTypeInt);
BreakContTarg oldBreakTarg = curBreakTarg;
ScriptMyLabel defaultLabel = null;
TokenSwitchCase sortedCases = null;
TokenSwitchCase defaultCase = null;
curBreakTarg = new BreakContTarg(this, "switchbreak_" + switchStmt.Unique);
// Build list of cases sorted by ascending values.
// There should not be any overlapping of values.
for(TokenSwitchCase thisCase = switchStmt.cases; thisCase != null; thisCase = thisCase.nextCase)
{
thisCase.label = ilGen.DefineLabel("case_" + thisCase.Unique);
// The default case if any, goes in its own separate slot.
if(thisCase.rVal1 == null)
{
if(defaultCase != null)
{
ErrorMsg(thisCase, "only one default case allowed");
ErrorMsg(defaultCase, "...prior default case");
return;
}
defaultCase = thisCase;
defaultLabel = thisCase.label;
continue;
}
// Evaluate case operands, they must be compile-time integer constants.
CompValu rVal = GenerateFromRVal(thisCase.rVal1);
if(!IsConstIntExpr(rVal, out thisCase.val1))
{
ErrorMsg(thisCase.rVal1, "must be compile-time char or integer constant");
return;
}
thisCase.val2 = thisCase.val1;
if(thisCase.rVal2 != null)
{
rVal = GenerateFromRVal(thisCase.rVal2);
if(!IsConstIntExpr(rVal, out thisCase.val2))
{
ErrorMsg(thisCase.rVal2, "must be compile-time char or integer constant");
return;
}
}
if(thisCase.val2 < thisCase.val1)
{
ErrorMsg(thisCase.rVal2, "must be .ge. first value for the case");
return;
}
// Insert into list, sorted by value.
// Note that both limits are inclusive.
TokenSwitchCase lastCase = null;
TokenSwitchCase nextCase;
for(nextCase = sortedCases; nextCase != null; nextCase = nextCase.nextSortedCase)
{
if(nextCase.val1 > thisCase.val2)
break;
if(nextCase.val2 >= thisCase.val1)
{
ErrorMsg(thisCase, "value used by previous case");
ErrorMsg(nextCase, "...previous case");
return;
}
lastCase = nextCase;
}
thisCase.nextSortedCase = nextCase;
if(lastCase == null)
{
sortedCases = thisCase;
}
else
{
lastCase.nextSortedCase = thisCase;
}
}
defaultLabel ??= ilGen.DefineLabel("default_" + switchStmt.Unique);
// Output code to jump to the case statement's labels based on integer index on stack.
// Note that each case still has the integer index on stack when jumped to.
int offset = 0;
for(TokenSwitchCase thisCase = sortedCases; thisCase != null;)
{
// Scan through list of cases to find the maximum number of cases who's numvalues-to-case ratio
// is from 0.5 to 2.0. If such a group is found, use a CIL switch for them. If not, just use a
// compare-and-branch for the current case.
int numCases = 0;
int numFound = 0;
int lowValue = thisCase.val1;
int numValues = 0;
for(TokenSwitchCase scanCase = thisCase; scanCase != null; scanCase = scanCase.nextSortedCase)
{
int nVals = scanCase.val2 - thisCase.val1 + 1;
double ratio = (double)nVals / (double)(++numCases);
if((ratio >= 0.5) && (ratio <= 2.0))
{
numFound = numCases;
numValues = nVals;
}
}
if(numFound > 1)
{
// There is a group of case's, starting with thisCase, that fall within our criteria, ie,
// that have a nice density of meaningful jumps.
//
// So first generate an array of jumps to the default label (explicit or implicit).
ScriptMyLabel[] labels = new ScriptMyLabel[numValues];
for(int i = 0; i < numValues; i++)
{
labels[i] = defaultLabel;
}
// Next, for each case in that group, fill in the corresponding array entries to jump to
// that case's label.
do
{
for(int i = thisCase.val1; i <= thisCase.val2; i++)
{
labels[i - lowValue] = thisCase.label;
}
thisCase = thisCase.nextSortedCase;
} while(--numFound > 0);
// Subtract the low value and do the computed jump.
// The OpCodes.Switch falls through if out of range (unsigned compare).
if(offset != lowValue)
{
ilGen.Emit(switchStmt, OpCodes.Ldc_I4, lowValue - offset);
ilGen.Emit(switchStmt, OpCodes.Sub);
offset = lowValue;
}
ilGen.Emit(switchStmt, OpCodes.Dup);
ilGen.Emit(switchStmt, OpCodes.Switch, labels);
}
else
{
// It's not economical to do with a computed jump, so output a subtract/compare/branch
// for thisCase.
if(lowValue == thisCase.val2)
{
ilGen.Emit(switchStmt, OpCodes.Dup);
ilGen.Emit(switchStmt, OpCodes.Ldc_I4, lowValue - offset);
ilGen.Emit(switchStmt, OpCodes.Beq, thisCase.label);
}
else
{
if(offset != lowValue)
{
ilGen.Emit(switchStmt, OpCodes.Ldc_I4, lowValue - offset);
ilGen.Emit(switchStmt, OpCodes.Sub);
offset = lowValue;
}
ilGen.Emit(switchStmt, OpCodes.Dup);
ilGen.Emit(switchStmt, OpCodes.Ldc_I4, thisCase.val2 - offset);
ilGen.Emit(switchStmt, OpCodes.Ble_Un, thisCase.label);
}
thisCase = thisCase.nextSortedCase;
}
}
ilGen.Emit(switchStmt, OpCodes.Br, defaultLabel);
// Output code for the cases themselves, in the order given by the programmer,
// so they fall through as programmer wants. This includes the default case, if any.
//
// Each label is jumped to with the index still on the stack. So pop it off in case
// the case body does a goto outside the switch or a return. If the case body might
// fall through to the next case or the bottom of the switch, push a zero so the stack
// matches in all cases.
for(TokenSwitchCase thisCase = switchStmt.cases; thisCase != null; thisCase = thisCase.nextCase)
{
ilGen.MarkLabel(thisCase.label); // the branch comes here
ilGen.Emit(thisCase, OpCodes.Pop); // pop the integer index off stack
mightGetHere = true; // it's possible to get here
for(TokenStmt stmt = thisCase.stmts; stmt != null; stmt = (TokenStmt)(stmt.nextToken))
{
GenerateStmt(stmt); // output the case/explicit default body
}
if(mightGetHere)
{
ilGen.Emit(thisCase, OpCodes.Ldc_I4_0);
// in case we fall through, push a dummy integer index
}
}
// If no explicit default case, output the default label here.
if(defaultCase == null)
{
ilGen.MarkLabel(defaultLabel);
mightGetHere = true;
}
// If the last case of the switch falls through out the bottom,
// we have to pop the index still on the stack.
if(mightGetHere)
{
ilGen.Emit(switchStmt, OpCodes.Pop);
}
// Output the 'break' statement target label.
// Note that the integer index is not on the stack at this point.
if(curBreakTarg.used)
{
ilGen.MarkLabel(curBreakTarg.label);
mightGetHere = true;
}
curBreakTarg = oldBreakTarg;
}
private void GenerateStmtSwitchStr(CompValu testRVal, TokenStmtSwitch switchStmt)
{
BreakContTarg oldBreakTarg = curBreakTarg;
ScriptMyLabel defaultLabel = null;
TokenSwitchCase caseTreeTop = null;
TokenSwitchCase defaultCase = null;
curBreakTarg = new BreakContTarg(this, "switchbreak_" + switchStmt.Unique);
// Make sure value is in a temp so we don't compute it more than once.
if(testRVal is not CompValuTemp)
{
CompValuTemp temp = new (testRVal.type, this);
testRVal.PushVal(this, switchStmt);
temp.Pop(this, switchStmt);
testRVal = temp;
}
// Build tree of cases.
// There should not be any overlapping of values.
for(TokenSwitchCase thisCase = switchStmt.cases; thisCase != null; thisCase = thisCase.nextCase)
{
thisCase.label = ilGen.DefineLabel("case");
// The default case if any, goes in its own separate slot.
if(thisCase.rVal1 == null)
{
if(defaultCase != null)
{
ErrorMsg(thisCase, "only one default case allowed");
ErrorMsg(defaultCase, "...prior default case");
return;
}
defaultCase = thisCase;
defaultLabel = thisCase.label;
continue;
}
// Evaluate case operands, they must be compile-time string constants.
CompValu rVal = GenerateFromRVal(thisCase.rVal1);
if(!IsConstStrExpr(rVal, out thisCase.str1))
{
ErrorMsg(thisCase.rVal1, "must be compile-time string constant");
continue;
}
thisCase.str2 = thisCase.str1;
if(thisCase.rVal2 != null)
{
rVal = GenerateFromRVal(thisCase.rVal2);
if(!IsConstStrExpr(rVal, out thisCase.str2))
{
ErrorMsg(thisCase.rVal2, "must be compile-time string constant");
continue;
}
}
if(String.Compare(thisCase.str2, thisCase.str1, StringComparison.Ordinal) < 0)
{
ErrorMsg(thisCase.rVal2, "must be .ge. first value for the case");
continue;
}
// Insert into list, sorted by value.
// Note that both limits are inclusive.
caseTreeTop = InsertCaseInTree(caseTreeTop, thisCase);
}
// Balance tree so we end up generating code that does O(log2 n) comparisons.
caseTreeTop = BalanceTree(caseTreeTop);
// Output compare and branch instructions in a tree-like fashion so we do O(log2 n) comparisons.
defaultLabel ??= ilGen.DefineLabel("default");
OutputStrCase(testRVal, caseTreeTop, defaultLabel);
// Output code for the cases themselves, in the order given by the programmer,
// so they fall through as programmer wants. This includes the default case, if any.
for(TokenSwitchCase thisCase = switchStmt.cases; thisCase != null; thisCase = thisCase.nextCase)
{
ilGen.MarkLabel(thisCase.label); // the branch comes here
mightGetHere = true; // it's possible to get here
for(TokenStmt stmt = thisCase.stmts; stmt != null; stmt = (TokenStmt)(stmt.nextToken))
{
GenerateStmt(stmt); // output the case/explicit default body
}
}
// If no explicit default case, output the default label here.
if(defaultCase == null)
{
ilGen.MarkLabel(defaultLabel);
mightGetHere = true;
}
// Output the 'break' statement target label.
if(curBreakTarg.used)
{
ilGen.MarkLabel(curBreakTarg.label);
mightGetHere = true;
}
curBreakTarg = oldBreakTarg;
}
/**
* @brief Insert a case in a tree of cases
* @param r = root of existing cases to insert into
* @param n = new case being inserted
* @returns new root with new case inserted
*/
private TokenSwitchCase InsertCaseInTree(TokenSwitchCase r, TokenSwitchCase n)
{
if(r == null)
return n;
TokenSwitchCase t = r;
while(true)
{
if(String.Compare(n.str2, t.str1, StringComparison.Ordinal) < 0)
{
if(t.lowerCase == null)
{
t.lowerCase = n;
break;
}
t = t.lowerCase;
continue;
}
if(String.Compare(n.str1, t.str2, StringComparison.Ordinal) > 0)
{
if(t.higherCase == null)
{
t.higherCase = n;
break;
}
t = t.higherCase;
continue;
}
ErrorMsg(n, "duplicate case");
ErrorMsg(r, "...duplicate of");
break;
}
return r;
}
/**
* @brief Balance a tree so left & right halves contain same number within +-1
* @param r = root of tree to balance
* @returns new root
*/
private static TokenSwitchCase BalanceTree(TokenSwitchCase r)
{
if(r == null)
return r;
int lc = CountTree(r.lowerCase);
int hc = CountTree(r.higherCase);
TokenSwitchCase n, x;
// If lower side is heavy, move highest nodes from lower side to
// higher side until balanced.
while(lc > hc + 1)
{
x = ExtractHighest(r.lowerCase, out n);
n.lowerCase = x;
n.higherCase = r;
r.lowerCase = null;
r = n;
lc--;
hc++;
}
// If higher side is heavy, move lowest nodes from higher side to
// lower side until balanced.
while(hc > lc + 1)
{
x = ExtractLowest(r.higherCase, out n);
n.higherCase = x;
n.lowerCase = r;
r.higherCase = null;
r = n;
lc++;
hc--;
}
// Now balance each side because they can be lopsided individually.
r.lowerCase = BalanceTree(r.lowerCase);
r.higherCase = BalanceTree(r.higherCase);
return r;
}
/**
* @brief Get number of nodes in a tree
* @param n = root of tree to count
* @returns number of nodes including root
*/
private static int CountTree(TokenSwitchCase n)
{
if(n == null)
return 0;
return 1 + CountTree(n.lowerCase) + CountTree(n.higherCase);
}
// Extract highest node from a tree
// @param r = root of tree to extract highest from
// @returns new root after node has been extracted
// n = node that was extracted from tree
private static TokenSwitchCase ExtractHighest(TokenSwitchCase r, out TokenSwitchCase n)
{
if(r.higherCase == null)
{
n = r;
return r.lowerCase;
}
r.higherCase = ExtractHighest(r.higherCase, out n);
return r;
}
// Extract lowest node from a tree
// @param r = root of tree to extract lowest from
// @returns new root after node has been extracted
// n = node that was extracted from tree
private static TokenSwitchCase ExtractLowest(TokenSwitchCase r, out TokenSwitchCase n)
{
if(r.lowerCase == null)
{
n = r;
return r.higherCase;
}
r.lowerCase = ExtractLowest(r.lowerCase, out n);
return r;
}
/**
* Output code for string-style case of a switch/case to jump to the script code associated with the case.
* @param testRVal = value being switched on
* @param thisCase = case that the code is being output for
* @param defaultLabel = where the default clause is (or past all cases if none)
* Note:
* Outputs code for this case and the lowerCase and higherCases if any.
* If no lowerCase or higherCase, outputs a br to defaultLabel so this code never falls through.
*/
private void OutputStrCase(CompValu testRVal, TokenSwitchCase thisCase, ScriptMyLabel defaultLabel)
{
// If nothing lower on tree and there is a single case value,
// just do one compare for equality.
if((thisCase.lowerCase == null) && (thisCase.higherCase == null) && (thisCase.str1 == thisCase.str2))
{
testRVal.PushVal(this, thisCase, tokenTypeStr);
ilGen.Emit(thisCase, OpCodes.Ldstr, thisCase.str1);
ilGen.Emit(thisCase, OpCodes.Ldc_I4, (int)StringComparison.Ordinal);
ilGen.Emit(thisCase, OpCodes.Call, stringCompareMethodInfo);
ilGen.Emit(thisCase, OpCodes.Brfalse, thisCase.label);
ilGen.Emit(thisCase, OpCodes.Br, defaultLabel);
return;
}
// Determine where to jump if switch value is lower than lower case value.
ScriptMyLabel lowerLabel = defaultLabel;
if(thisCase.lowerCase != null)
{
lowerLabel = ilGen.DefineLabel("lower");
}
// If single case value, put comparison result in this temp.
CompValuTemp cmpv1 = null;
if(thisCase.str1 == thisCase.str2)
{
cmpv1 = new CompValuTemp(tokenTypeInt, this);
}
// If switch value .lt. lower case value, jump to lower label.
// Maybe save comparison result in a temp.
testRVal.PushVal(this, thisCase, tokenTypeStr);
ilGen.Emit(thisCase, OpCodes.Ldstr, thisCase.str1);
ilGen.Emit(thisCase, OpCodes.Ldc_I4, (int)StringComparison.Ordinal);
ilGen.Emit(thisCase, OpCodes.Call, stringCompareMethodInfo);
if(cmpv1 != null)
{
ilGen.Emit(thisCase, OpCodes.Dup);
cmpv1.Pop(this, thisCase);
}
ilGen.Emit(thisCase, OpCodes.Ldc_I4_0);
ilGen.Emit(thisCase, OpCodes.Blt, lowerLabel);
// If switch value .le. higher case value, jump to case code.
// Maybe get comparison from the temp.
if(cmpv1 == null)
{
testRVal.PushVal(this, thisCase, tokenTypeStr);
ilGen.Emit(thisCase, OpCodes.Ldstr, thisCase.str2);
ilGen.Emit(thisCase, OpCodes.Ldc_I4, (int)StringComparison.Ordinal);
ilGen.Emit(thisCase, OpCodes.Call, stringCompareMethodInfo);
}
else
{
cmpv1.PushVal(this, thisCase);
}
ilGen.Emit(thisCase, OpCodes.Ldc_I4_0);
ilGen.Emit(thisCase, OpCodes.Ble, thisCase.label);
// Output code for higher comparison if any.
if(thisCase.higherCase == null)
{
ilGen.Emit(thisCase, OpCodes.Br, defaultLabel);
}
else
{
OutputStrCase(testRVal, thisCase.higherCase, defaultLabel);
}
// Output code for lower comparison if any.
if(thisCase.lowerCase != null)
{
ilGen.MarkLabel(lowerLabel);
OutputStrCase(testRVal, thisCase.lowerCase, defaultLabel);
}
}
/**
* @brief output code for a throw statement.
* @param throwStmt = throw statement token, including value to be thrown
*/
private void GenerateStmtThrow(TokenStmtThrow throwStmt)
{
if(!mightGetHere)
return;
// 'throw' statements never fall through.
mightGetHere = false;
// Output code for either a throw or a rethrow.
if(throwStmt.rVal == null)
{
for(TokenStmtBlock blk = curStmtBlock; blk != null; blk = blk.outerStmtBlock)
{
if(curStmtBlock.isCatch)
{
ilGen.Emit(throwStmt, OpCodes.Rethrow);
return;
}
}
ErrorMsg(throwStmt, "rethrow allowed only in catch clause");
}
else
{
CompValu rVal = GenerateFromRVal(throwStmt.rVal);
rVal.PushVal(this, throwStmt.rVal, tokenTypeObj);
ilGen.Emit(throwStmt, OpCodes.Call, thrownExceptionWrapMethodInfo);
ilGen.Emit(throwStmt, OpCodes.Throw);
}
}
/**
* @brief output code for a try/catch/finally block
*/
private void GenerateStmtTry(TokenStmtTry tryStmt)
{
if(!mightGetHere)
return;
/*
* Reducer should make sure we have exactly one of catch or finally.
*/
if((tryStmt.catchStmt == null) && (tryStmt.finallyStmt == null))
{
throw new Exception("must have a catch or a finally on try");
}
if((tryStmt.catchStmt != null) && (tryStmt.finallyStmt != null))
{
throw new Exception("can't have both catch and finally on same try");
}
// Stack the call labels.
// Try blocks have their own series of call labels.
ScriptMyLocal saveCallNo = actCallNo;
LinkedList<CallLabel> saveCallLabels = actCallLabels;
// Generate code for either try { } catch { } or try { } finally { }.
if(tryStmt.catchStmt != null)
GenerateStmtTryCatch(tryStmt);
if(tryStmt.finallyStmt != null)
GenerateStmtTryFinally(tryStmt);
// Restore call labels.
actCallNo = saveCallNo;
actCallLabels = saveCallLabels;
}
/**
* @brief output code for a try/catch block
*
* int __tryCallNo = -1; // call number within try { } subblock
* int __catCallNo = -1; // call number within catch { } subblock
* Exception __catThrown = null; // caught exception
* <oldCallLabel>: // the outside world jumps here to restore us no matter ...
* try { // ... where we actually were inside of try/catch
* if (__tryCallNo >= 0) goto tryCallSw; // maybe go do restore
* <try body using __tryCallNo> // execute script-defined code
* // ...stack capture WILL run catch { } subblock
* leave tryEnd; // exits
* tryThrow:<tryCallLabel>:
* throw new ScriptRestoreCatchException(__catThrown); // catch { } was running, jump to its beginning
* tryCallSw: // restoring...
* switch (__tryCallNo) back up into <try body> // not catching, jump back inside try
* } catch (Exception exc) {
* exc = ScriptRestoreCatchException.Unwrap(exc); // unwrap possible ScriptRestoreCatchException
* if (exc == null) goto catchRetro; // rethrow if IXMRUncatchable (eg, StackCaptureException)
* __catThrown = exc; // save what was thrown so restoring try { } will throw it again
* catchVar = exc; // set up script-visible variable
* __tryCallNo = tryThrow:<tryCallLabel>
* if (__catCallNo >= 0) goto catchCallSw; // if restoring, go check below
* <catch body using __catCallNo> // normal, execute script-defined code
* leave tryEnd; // all done, exit catch { }
* catchRetro:
* rethrow;
* catchCallSw:
* switch (__catCallNo) back up into <catch body> // restart catch { } code wherever it was
* }
* tryEnd:
*/
private void GenerateStmtTryCatch(TokenStmtTry tryStmt)
{
CompValuTemp tryCallNo = new (tokenTypeInt, this);
CompValuTemp catCallNo = new (tokenTypeInt, this);
CompValuTemp catThrown = new (tokenTypeExc, this);
ScriptMyLabel tryCallSw = ilGen.DefineLabel("__tryCallSw_" + tryStmt.Unique);
ScriptMyLabel catchRetro = ilGen.DefineLabel("__catchRetro_" + tryStmt.Unique);
ScriptMyLabel catchCallSw = ilGen.DefineLabel("__catchCallSw_" + tryStmt.Unique);
ScriptMyLabel tryEnd = ilGen.DefineLabel("__tryEnd_" + tryStmt.Unique);
SetCallNo(tryStmt, tryCallNo, -1);
SetCallNo(tryStmt, catCallNo, -1);
ilGen.Emit(tryStmt, OpCodes.Ldnull);
catThrown.Pop(this, tryStmt);
_ = new CallLabel(this, tryStmt); // <oldcalllabel>:
ilGen.BeginExceptionBlock(); // try {
openCallLabel = null;
GetCallNo(tryStmt, tryCallNo); // if (__tryCallNo >= 0) goto tryCallSw;
ilGen.Emit(tryStmt, OpCodes.Ldc_I4_0);
ilGen.Emit(tryStmt, OpCodes.Bge, tryCallSw);
actCallNo = tryCallNo.localBuilder; // set up __tryCallNo for call labels
actCallLabels = new LinkedList<CallLabel>();
GenerateStmtBlock(tryStmt.tryStmt); // output the try block statement subblock
bool tryBlockFallsOutBottom = mightGetHere;
if(tryBlockFallsOutBottom)
{
_ = new CallLabel(this, tryStmt); // <tryCallLabel>:
ilGen.Emit(tryStmt, OpCodes.Leave, tryEnd); // leave tryEnd;
openCallLabel = null;
}
CallLabel tryThrow = new (this, tryStmt); // tryThrow:<tryCallLabel>:
catThrown.PushVal(this, tryStmt); // throw new ScriptRestoreCatchException (__catThrown);
ilGen.Emit(tryStmt, OpCodes.Newobj, scriptRestoreCatchExceptionConstructorInfo);
ilGen.Emit(tryStmt, OpCodes.Throw);
openCallLabel = null;
ilGen.MarkLabel(tryCallSw); // tryCallSw:
OutputCallNoSwitchStmt(); // switch (tryCallNo) ...
CompValuLocalVar catchVarLocExc = null;
CompValuTemp catchVarLocStr = null;
if(tryStmt.catchVar.type.ToSysType() == typeof(Exception))
{
catchVarLocExc = new CompValuLocalVar(tryStmt.catchVar.type, tryStmt.catchVar.name.val, this);
}
else if(tryStmt.catchVar.type.ToSysType() == typeof(String))
{
catchVarLocStr = new CompValuTemp(tryStmt.catchVar.type, this);
}
ScriptMyLocal excLocal = ilGen.DeclareLocal(typeof(String), "catchstr_" + tryStmt.Unique);
ilGen.BeginCatchBlock(typeof(Exception)); // start of the catch block that can catch any exception
ilGen.Emit(tryStmt.catchStmt, OpCodes.Call, scriptRestoreCatchExceptionUnwrap);
// exc = ScriptRestoreCatchException.Unwrap (exc);
ilGen.Emit(tryStmt.catchStmt, OpCodes.Dup); // rethrow if IXMRUncatchable (eg, StackCaptureException)
ilGen.Emit(tryStmt.catchStmt, OpCodes.Brfalse, catchRetro);
if(tryStmt.catchVar.type.ToSysType() == typeof(Exception))
{
tryStmt.catchVar.location = catchVarLocExc;
ilGen.Emit(tryStmt.catchStmt, OpCodes.Dup);
catThrown.Pop(this, tryStmt); // store exception object in catThrown
catchVarLocExc.Pop(this, tryStmt.catchVar.name); // also store in script-visible variable
}
else if(tryStmt.catchVar.type.ToSysType() == typeof(String))
{
tryStmt.catchVar.location = catchVarLocStr;
ilGen.Emit(tryStmt.catchStmt, OpCodes.Dup);
catThrown.Pop(this, tryStmt); // store exception object in catThrown
ilGen.Emit(tryStmt.catchStmt, OpCodes.Call, catchExcToStrMethodInfo);
ilGen.Emit(tryStmt.catchStmt, OpCodes.Stloc, excLocal);
catchVarLocStr.PopPre(this, tryStmt.catchVar.name);
ilGen.Emit(tryStmt.catchStmt, OpCodes.Ldloc, excLocal);
catchVarLocStr.PopPost(this, tryStmt.catchVar.name, tokenTypeStr);
}
else
{
throw new Exception("bad catch var type " + tryStmt.catchVar.type.ToString());
}
SetCallNo(tryStmt, tryCallNo, tryThrow.index); // __tryCallNo = tryThrow so it knows to do 'throw catThrown' on restore
GetCallNo(tryStmt, catCallNo); // if (__catCallNo >= 0) goto catchCallSw;
ilGen.Emit(tryStmt.catchStmt, OpCodes.Ldc_I4_0);
ilGen.Emit(tryStmt.catchStmt, OpCodes.Bge, catchCallSw);
actCallNo = catCallNo.localBuilder; // set up __catCallNo for call labels
actCallLabels.Clear();
mightGetHere = true; // if we can get to the 'try' assume we can get to the 'catch'
GenerateStmtBlock(tryStmt.catchStmt); // output catch clause statement subblock
if(mightGetHere)
{
_ = new CallLabel(this, tryStmt.catchStmt);
ilGen.Emit(tryStmt.catchStmt, OpCodes.Leave, tryEnd);
openCallLabel = null;
}
ilGen.MarkLabel(catchRetro); // not a script-visible exception, rethrow it
ilGen.Emit(tryStmt.catchStmt, OpCodes.Pop);
ilGen.Emit(tryStmt.catchStmt, OpCodes.Rethrow);
ilGen.MarkLabel(catchCallSw);
OutputCallNoSwitchStmt(); // restoring, jump back inside script-defined body
ilGen.EndExceptionBlock();
ilGen.MarkLabel(tryEnd);
mightGetHere |= tryBlockFallsOutBottom; // also get here if try body falls out bottom
}
/**
* @brief output code for a try/finally block
*
* This is such a mess because there is hidden state for the finally { } that we have to recreate.
* The finally { } can be entered either via an exception being thrown in the try { } or a leave
* being executed in the try { } whose target is outside the try { } finally { }.
*
* For the thrown exception case, we slip in a try { } catch { } wrapper around the original try { }
* body. This will sense any thrown exception that would execute the finally { }. Then we have our
* try { } throw the exception on restore which gets the finally { } called and on its way again.
*
* For the leave case, we prefix all leave instructions with a call label and we explicitly chain
* all leaves through each try { } that has an associated finally { } that the leave would unwind
* through. This gets each try { } to simply jump to the correct leave instruction which immediately
* invokes the corresponding finally { } and then chains to the next leave instruction on out until
* it gets to its target.
*
* int __finCallNo = -1; // call number within finally { } subblock
* int __tryCallNo = -1; // call number within try { } subblock
* Exception __catThrown = null; // caught exception
* <oldCallLabel>: // the outside world jumps here to restore us no matter ...
* try { // ... where we actually were inside of try/finally
* try {
* if (__tryCallNo >= 0) goto tryCallSw; // maybe go do restore
* <try body using __tryCallNo> // execute script-defined code
* // ...stack capture WILL run catch/finally { } subblock
* leave tryEnd; // executes finally { } subblock and exits
* tryThrow:<tryCallLabel>:
* throw new ScriptRestoreCatchException(__catThrown); // catch { } was running, jump to its beginning
* tryCallSw: // restoring...
* switch (__tryCallNo) back up into <try body> // jump back inside try, ...
* // ... maybe to a leave if we were doing finally { } subblock
* } catch (Exception exc) { // in case we're getting to finally { } via a thrown exception:
* exc = ScriptRestoreCatchException.Unwrap(exc); // unwrap possible ScriptRestoreCatchException
* if (callMode == CallMode_SAVE) goto catchRetro; // don't touch anything if capturing stack
* __catThrown = exc; // save exception so try { } can throw it on restore
* __tryCallNo = tryThrow:<tryCallLabel>; // tell try { } to throw it on restore
* catchRetro:
* rethrow; // in any case, go on to finally { } subblock now
* }
* } finally {
* if (callMode == CallMode_SAVE) goto finEnd; // don't touch anything if capturing stack
* if (__finCallNo >= 0) goto finCallSw; // maybe go do restore
* <finally body using __finCallNo> // normal, execute script-defined code
* finEnd:
* endfinally // jump to leave/throw target or next outer finally { }
* finCallSw:
* switch (__finCallNo) back up into <finally body> // restoring, restart finally { } code wherever it was
* }
* tryEnd:
*/
private void GenerateStmtTryFinally(TokenStmtTry tryStmt)
{
CompValuTemp finCallNo = new (tokenTypeInt, this);
CompValuTemp tryCallNo = new (tokenTypeInt, this);
CompValuTemp catThrown = new (tokenTypeExc, this);
ScriptMyLabel tryCallSw = ilGen.DefineLabel("__tryCallSw_" + tryStmt.Unique);
ScriptMyLabel catchRetro = ilGen.DefineLabel("__catchRetro_" + tryStmt.Unique);
ScriptMyLabel finCallSw = ilGen.DefineLabel("__finCallSw_" + tryStmt.Unique);
BreakContTarg finEnd = new (this, "__finEnd_" + tryStmt.Unique);
ScriptMyLabel tryEnd = ilGen.DefineLabel("__tryEnd_" + tryStmt.Unique);
SetCallNo(tryStmt, finCallNo, -1);
SetCallNo(tryStmt, tryCallNo, -1);
ilGen.Emit(tryStmt, OpCodes.Ldnull);
catThrown.Pop(this, tryStmt);
_ = new CallLabel(this, tryStmt); // <oldcalllabel>:
ilGen.BeginExceptionBlock(); // try {
ilGen.BeginExceptionBlock(); // try {
openCallLabel = null;
GetCallNo(tryStmt, tryCallNo); // if (__tryCallNo >= 0) goto tryCallSw;
ilGen.Emit(tryStmt, OpCodes.Ldc_I4_0);
ilGen.Emit(tryStmt, OpCodes.Bge, tryCallSw);
actCallNo = tryCallNo.localBuilder; // set up __tryCallNo for call labels
actCallLabels = new LinkedList<CallLabel>();
GenerateStmtBlock(tryStmt.tryStmt); // output the try block statement subblock
if(mightGetHere)
{
_ = new CallLabel(this, tryStmt); // <newCallLabel>:
ilGen.Emit(tryStmt, OpCodes.Leave, tryEnd); // leave tryEnd;
openCallLabel = null;
}
foreach(IntermediateLeave iLeave in tryStmt.iLeaves.Values)
{
ilGen.MarkLabel(iLeave.jumpIntoLabel); // intr2_exit:
_ = new CallLabel(this, tryStmt); // tryCallNo = n;
ilGen.Emit(tryStmt, OpCodes.Leave, iLeave.jumpAwayLabel); // __callNo_n_: leave int1_exit;
openCallLabel = null;
}
CallLabel tryThrow = new (this, tryStmt); // tryThrow:<tryCallLabel>:
catThrown.PushVal(this, tryStmt); // throw new ScriptRestoreCatchException (__catThrown);
ilGen.Emit(tryStmt, OpCodes.Newobj, scriptRestoreCatchExceptionConstructorInfo);
ilGen.Emit(tryStmt, OpCodes.Throw);
openCallLabel = null;
ilGen.MarkLabel(tryCallSw); // tryCallSw:
OutputCallNoSwitchStmt(); // switch (tryCallNo) ...
// }
ilGen.BeginCatchBlock(typeof(Exception)); // start of the catch block that can catch any exception
ilGen.Emit(tryStmt, OpCodes.Call, scriptRestoreCatchExceptionUnwrap); // exc = ScriptRestoreCatchException.Unwrap (exc);
PushXMRInst(); // if (callMode == CallMode_SAVE) goto catchRetro;
ilGen.Emit(tryStmt, OpCodes.Ldfld, callModeFieldInfo);
ilGen.Emit(tryStmt, OpCodes.Ldc_I4, XMRInstAbstract.CallMode_SAVE);
ilGen.Emit(tryStmt, OpCodes.Beq, catchRetro);
catThrown.Pop(this, tryStmt); // __catThrown = exc;
SetCallNo(tryStmt, tryCallNo, tryThrow.index); // __tryCallNo = tryThrow:<tryCallLabel>;
ilGen.Emit(tryStmt, OpCodes.Rethrow);
ilGen.MarkLabel(catchRetro); // catchRetro:
ilGen.Emit(tryStmt, OpCodes.Pop);
ilGen.Emit(tryStmt, OpCodes.Rethrow); // rethrow;
ilGen.EndExceptionBlock(); // }
ilGen.BeginFinallyBlock(); // start of the finally block
PushXMRInst(); // if (callMode == CallMode_SAVE) goto finEnd;
ilGen.Emit(tryStmt, OpCodes.Ldfld, callModeFieldInfo);
ilGen.Emit(tryStmt, OpCodes.Ldc_I4, XMRInstAbstract.CallMode_SAVE);
ilGen.Emit(tryStmt, OpCodes.Beq, finEnd.label);
GetCallNo(tryStmt, finCallNo); // if (__finCallNo >= 0) goto finCallSw;
ilGen.Emit(tryStmt, OpCodes.Ldc_I4_0);
ilGen.Emit(tryStmt, OpCodes.Bge, finCallSw);
actCallNo = finCallNo.localBuilder; // set up __finCallNo for call labels
actCallLabels.Clear();
mightGetHere = true; // if we can get to the 'try' assume we can get to the 'finally'
GenerateStmtBlock(tryStmt.finallyStmt); // output finally clause statement subblock
ilGen.MarkLabel(finEnd.label); // finEnd:
ilGen.Emit(tryStmt, OpCodes.Endfinally); // return out to next finally { } or catch { } or leave target
ilGen.MarkLabel(finCallSw); // restore mode, switch (finCallNo) ...
OutputCallNoSwitchStmt();
ilGen.EndExceptionBlock();
ilGen.MarkLabel(tryEnd);
mightGetHere |= finEnd.used; // get here if finally body falls through or has a break statement
}
/**
* @brief Generate code to initialize a variable to its default value.
*/
private void GenerateStmtVarIniDef(TokenStmtVarIniDef varIniDefStmt)
{
if(!mightGetHere)
return;
CompValu left = GenerateFromLVal(varIniDefStmt.var);
left.PopPre(this, varIniDefStmt);
PushDefaultValue(left.type);
left.PopPost(this, varIniDefStmt);
}
/**
* @brief generate code for a 'while' statement including the loop body.
*/
private void GenerateStmtWhile(TokenStmtWhile whileStmt)
{
if(!mightGetHere)
return;
BreakContTarg oldBreakTarg = curBreakTarg;
BreakContTarg oldContTarg = curContTarg;
ScriptMyLabel loopLabel = ilGen.DefineLabel("whileloop_" + whileStmt.Unique);
curBreakTarg = new BreakContTarg(this, "whilebreak_" + whileStmt.Unique);
curContTarg = new BreakContTarg(this, "whilecont_" + whileStmt.Unique);
ilGen.MarkLabel(loopLabel); // loop:
CompValu testRVal = GenerateFromRVal(whileStmt.testRVal); // testRVal = while test expression
if(!IsConstBoolExprTrue(testRVal))
{
testRVal.PushVal(this, whileStmt.testRVal, tokenTypeBool); // if (!testRVal)
ilGen.Emit(whileStmt, OpCodes.Brfalse, curBreakTarg.label); // goto break
curBreakTarg.used = true;
}
GenerateStmt(whileStmt.bodyStmt); // while body statement
if(curContTarg.used)
{
ilGen.MarkLabel(curContTarg.label); // cont:
mightGetHere = true;
}
if(mightGetHere)
{
EmitCallCheckRun(whileStmt, false); // __sw.CheckRun()
ilGen.Emit(whileStmt, OpCodes.Br, loopLabel); // goto loop
}
mightGetHere = curBreakTarg.used;
if(mightGetHere)
{
ilGen.MarkLabel(curBreakTarg.label); // done:
}
curBreakTarg = oldBreakTarg;
curContTarg = oldContTarg;
}
/**
* @brief process a local variable declaration statement, possibly with initialization expression.
* Note that the function header processing allocated stack space (CompValuTemp) for the
* variable and now all we do is write its initialization value.
*/
private void GenerateDeclVar(TokenDeclVar declVar)
{
// Script gave us an initialization value, so just store init value in var like an assignment statement.
// If no init given, set it to its default value.
CompValu local = declVar.location;
if(declVar.init != null)
{
CompValu rVal = GenerateFromRVal(declVar.init, local.GetArgTypes());
local.PopPre(this, declVar);
rVal.PushVal(this, declVar.init, declVar.type);
local.PopPost(this, declVar);
}
else
{
local.PopPre(this, declVar);
PushDefaultValue(declVar.type);
local.PopPost(this, declVar);
}
}
/**
* @brief Get the type and location of an L-value (eg, variable)
* @param lVal = L-value expression to evaluate
* @param argsig = null: it's a field/property
* else: select overload method that fits these arg types
*/
private CompValu GenerateFromLVal(TokenLVal lVal)
{
return GenerateFromLVal(lVal, null);
}
private CompValu GenerateFromLVal(TokenLVal lVal, TokenType[] argsig)
{
if(lVal is TokenLValArEle TokenLValArElelVal)
return GenerateFromLValArEle(TokenLValArElelVal);
if(lVal is TokenLValBaseField TokenLValBaseFieldlVal)
return GenerateFromLValBaseField(TokenLValBaseFieldlVal, argsig);
if(lVal is TokenLValIField TokenLValIFieldlVal)
return GenerateFromLValIField(TokenLValIFieldlVal, argsig);
if(lVal is TokenLValName TokenLValNamelVal)
return GenerateFromLValName(TokenLValNamelVal, argsig);
if(lVal is TokenLValSField TokenLValSFieldlVal)
return GenerateFromLValSField(TokenLValSFieldlVal, argsig);
throw new Exception("bad lval class");
}
/**
* @brief we have an L-value token that is an element within an array.
* @returns a CompValu giving the type and location of the element of the array.
*/
private CompValu GenerateFromLValArEle(TokenLValArEle lVal)
{
CompValu subCompValu;
// Compute location of array itself.
CompValu baseCompValu = GenerateFromRVal(lVal.baseRVal);
// Maybe it is a fixed array access.
string basetypestring = baseCompValu.type.ToString();
if(basetypestring.EndsWith("]"))
{
TokenRVal subRVal = lVal.subRVal;
int nSubs = 1;
if(subRVal is TokenRValList list)
{
nSubs = list.nItems;
subRVal = list.rVal;
}
int rank = basetypestring.IndexOf(']') - basetypestring.IndexOf('[');
if(nSubs != rank)
{
ErrorMsg(lVal.baseRVal, "expect " + rank + " subscript" + ((rank == 1) ? "" : "s") + " but have " + nSubs);
}
CompValu[] subCompValus = new CompValu[rank];
int i;
for(i = 0; (subRVal != null) && (i < rank); i++)
{
subCompValus[i] = GenerateFromRVal(subRVal);
subRVal = (TokenRVal)subRVal.nextToken;
}
while(i < rank)
subCompValus[i++] = new CompValuInteger(new TokenTypeInt(lVal.subRVal), 0);
return new CompValuFixArEl(this, baseCompValu, subCompValus);
}
// Maybe it is accessing the $idxprop property of a script-defined class.
if(baseCompValu.type is TokenTypeSDTypeClass typeclass)
{
TokenName name = new (lVal, "$idxprop");
TokenTypeSDTypeClass sdtType = typeclass;
TokenDeclSDTypeClass sdtDecl = sdtType.decl;
TokenDeclVar idxProp = FindThisMember(sdtDecl, name, null);
if(idxProp == null)
{
ErrorMsg(lVal, "no index property in class " + sdtDecl.longName.val);
return new CompValuVoid(lVal);
}
if((idxProp.sdtFlags & ScriptReduce.SDT_STATIC) != 0)
{
ErrorMsg(lVal, "non-static reference to static member " + idxProp.name.val);
return new CompValuVoid(idxProp);
}
CheckAccess(idxProp, name);
TokenType[] argTypes = IdxPropArgTypes(idxProp);
CompValu[] compValus = IdxPropCompValus(lVal, argTypes.Length);
return new CompValuIdxProp(idxProp, baseCompValu, argTypes, compValus);
}
// Maybe they are accessing $idxprop property of a script-defined interface.
if(baseCompValu.type is TokenTypeSDTypeInterface TokenTypeSDTypeInterfacebaseCompValutype)
{
TokenName name = new (lVal, "$idxprop");
TokenTypeSDTypeInterface sdtType = TokenTypeSDTypeInterfacebaseCompValutype;
TokenDeclVar idxProp = FindInterfaceMember(sdtType, name, null, ref baseCompValu);
if(idxProp == null)
{
ErrorMsg(lVal, "no index property defined for interface " + sdtType.decl.longName.val);
return baseCompValu;
}
TokenType[] argTypes = IdxPropArgTypes(idxProp);
CompValu[] compValus = IdxPropCompValus(lVal, argTypes.Length);
return new CompValuIdxProp(idxProp, baseCompValu, argTypes, compValus);
}
// Maybe it is extracting a character from a string.
if((baseCompValu.type is TokenTypeKey) || (baseCompValu.type is TokenTypeStr))
{
subCompValu = GenerateFromRVal(lVal.subRVal);
return new CompValuStrChr(new TokenTypeChar(lVal), baseCompValu, subCompValu);
}
// Maybe it is extracting an element from a list.
if(baseCompValu.type is TokenTypeList)
{
subCompValu = GenerateFromRVal(lVal.subRVal);
return new CompValuListEl(new TokenTypeObject(lVal), baseCompValu, subCompValu);
}
// Access should be to XMR_Array otherwise.
if(baseCompValu.type is not TokenTypeArray)
{
ErrorMsg(lVal, "taking subscript of non-array");
return baseCompValu;
}
subCompValu = GenerateFromRVal(lVal.subRVal);
return new CompValuArEle(new TokenTypeObject(lVal), baseCompValu, subCompValu);
}
/**
* @brief Get number and type of arguments required by an index property.
*/
private static TokenType[] IdxPropArgTypes(TokenDeclVar idxProp)
{
TokenType[] argTypes;
if(idxProp.getProp != null)
{
int nArgs = idxProp.getProp.argDecl.varDict.Count;
argTypes = new TokenType[nArgs];
foreach(TokenDeclVar var in idxProp.getProp.argDecl.varDict)
{
argTypes[var.vTableIndex] = var.type;
}
}
else
{
int nArgs = idxProp.setProp.argDecl.varDict.Count - 1;
argTypes = new TokenType[nArgs];
foreach(TokenDeclVar var in idxProp.setProp.argDecl.varDict)
{
if(var.vTableIndex < nArgs)
{
argTypes[var.vTableIndex] = var.type;
}
}
}
return argTypes;
}
/**
* @brief Get number and computed value of index property arguments.
* @param lVal = list of arguments
* @param nArgs = number of arguments required
* @returns null: argument count mismatch
* else: array of index property argument values
*/
private CompValu[] IdxPropCompValus(TokenLValArEle lVal, int nArgs)
{
TokenRVal subRVal = lVal.subRVal;
int nSubs = 1;
if(subRVal is TokenRValList list)
{
nSubs = list.nItems;
subRVal = list.rVal;
}
if(nSubs != nArgs)
{
ErrorMsg(lVal, "index property requires " + nArgs + " subscript(s)");
return null;
}
CompValu[] subCompValus = new CompValu[nArgs];
for(int i = 0; i < nArgs; i++)
{
subCompValus[i] = GenerateFromRVal(subRVal);
subRVal = (TokenRVal)subRVal.nextToken;
}
return subCompValus;
}
/**
* @brief using 'base' within a script-defined instance method to refer to an instance field/method
* of the class being extended.
*/
private CompValu GenerateFromLValBaseField(TokenLValBaseField baseField, TokenType[] argsig)
{
string fieldName = baseField.fieldName.val;
TokenDeclSDType sdtDecl = curDeclFunc.sdtClass;
if((sdtDecl == null) || ((curDeclFunc.sdtFlags & ScriptReduce.SDT_STATIC) != 0))
{
ErrorMsg(baseField, "cannot use 'base' outside instance method body");
return new CompValuVoid(baseField);
}
if(!IsSDTInstMethod())
{
ErrorMsg(baseField, "cannot access instance member of base class from static method");
return new CompValuVoid(baseField);
}
TokenDeclVar declVar = FindThisMember(sdtDecl.extends, baseField.fieldName, argsig);
if(declVar != null)
{
CheckAccess(declVar, baseField.fieldName);
TokenType baseType = declVar.sdtClass.MakeRefToken(baseField);
CompValu basePtr = new CompValuArg(baseType, 0);
return AccessInstanceMember(declVar, basePtr, baseField, true);
}
ErrorMsg(baseField, "no member " + fieldName + ArgSigString(argsig) + " rootward of " + sdtDecl.longName.val);
return new CompValuVoid(baseField);
}
/**
* @brief We have an L-value token that is an instance field/method within a struct.
* @returns a CompValu giving the type and location of the field/method in the struct.
*/
private CompValu GenerateFromLValIField(TokenLValIField lVal, TokenType[] argsig)
{
CompValu baseRVal = GenerateFromRVal(lVal.baseRVal);
string fieldName = lVal.fieldName.val + ArgSigString(argsig);
// Maybe they are accessing an instance field, method or property of a script-defined class.
if(baseRVal.type is TokenTypeSDTypeClass)
{
TokenTypeSDTypeClass sdtType = (TokenTypeSDTypeClass)baseRVal.type;
TokenDeclSDTypeClass sdtDecl = sdtType.decl;
TokenDeclVar declVar = FindThisMember(sdtDecl, lVal.fieldName, argsig);
if(declVar != null)
{
CheckAccess(declVar, lVal.fieldName);
return AccessInstanceMember(declVar, baseRVal, lVal, false);
}
ErrorMsg(lVal.fieldName, "no member " + fieldName + " in class " + sdtDecl.longName.val);
return new CompValuVoid(lVal.fieldName);
}
// Maybe they are accessing a method or property of a script-defined interface.
if(baseRVal.type is TokenTypeSDTypeInterface)
{
TokenTypeSDTypeInterface sdtType = (TokenTypeSDTypeInterface)baseRVal.type;
TokenDeclVar declVar = FindInterfaceMember(sdtType, lVal.fieldName, argsig, ref baseRVal);
if(declVar != null)
{
return new CompValuIntfMember(declVar, baseRVal);
}
ErrorMsg(lVal.fieldName, "no member " + fieldName + " in interface " + sdtType.decl.longName.val);
return new CompValuVoid(lVal.fieldName);
}
// Since we only have a few built-in types with fields, just pound them out.
if(baseRVal.type is TokenTypeArray)
{
// no arguments, no parentheses, just the field name, returning integer
// but internally, it is a call to a method()
if(fieldName == "count")
{
return new CompValuIntInstROProp(tokenTypeInt, baseRVal, arrayCountMethodInfo);
}
// no arguments but with the parentheses, returning void
if(fieldName == "clear()")
{
return new CompValuIntInstMeth(XMR_Array.clearDelegate, baseRVal, arrayClearMethodInfo);
}
// single integer argument, returning an object
if(fieldName == "index(integer)")
{
return new CompValuIntInstMeth(XMR_Array.indexDelegate, baseRVal, arrayIndexMethodInfo);
}
if(fieldName == "value(integer)")
{
return new CompValuIntInstMeth(XMR_Array.valueDelegate, baseRVal, arrayValueMethodInfo);
}
}
if(baseRVal.type is TokenTypeRot)
{
FieldInfo fi = null;
if(fieldName == "x")
fi = rotationXFieldInfo;
if(fieldName == "y")
fi = rotationYFieldInfo;
if(fieldName == "z")
fi = rotationZFieldInfo;
if(fieldName == "s")
fi = rotationSFieldInfo;
if(fi != null)
{
return new CompValuField(new TokenTypeFloat(lVal), baseRVal, fi);
}
}
if(baseRVal.type is TokenTypeVec)
{
FieldInfo fi = null;
if(fieldName == "x")
fi = vectorXFieldInfo;
if(fieldName == "y")
fi = vectorYFieldInfo;
if(fieldName == "z")
fi = vectorZFieldInfo;
if(fi != null)
{
return new CompValuField(new TokenTypeFloat(lVal), baseRVal, fi);
}
}
ErrorMsg(lVal, "type " + baseRVal.type.ToString() + " does not define member " + fieldName);
return baseRVal;
}
/**
* @brief We have an L-value token that is a function, method or variable name.
* @param lVal = name we are looking for
* @param argsig = null: just look for name as a variable
* else: look for name as a function/method being called with the given argument types
* eg, "(string,integer,list)"
* @returns a CompValu giving the type and location of the function, method or variable.
*/
private CompValu GenerateFromLValName(TokenLValName lVal, TokenType[] argsig)
{
// Look in variable stack then look for built-in constants and functions.
TokenDeclVar var = FindNamedVar(lVal, argsig);
if(var == null)
{
ErrorMsg(lVal, "undefined constant/function/variable " + lVal.name.val + ArgSigString(argsig));
return new CompValuVoid(lVal);
}
// Maybe it has an implied 'this.' on the front.
if((var.sdtClass != null) && ((var.sdtFlags & ScriptReduce.SDT_STATIC) == 0))
{
if(!IsSDTInstMethod())
{
ErrorMsg(lVal, "cannot access instance member of class from static method");
return new CompValuVoid(lVal);
}
// Don't allow something such as:
//
// class A {
// integer I;
// class B {
// Print ()
// {
// llOwnerSay ("I=" + (string)I); <- access to I not allowed inside class B.
// explicit reference required as we don't
// have a valid reference to class A.
// }
// }
// }
//
// But do allow something such as:
//
// class A {
// integer I;
// }
// class B : A {
// Print ()
// {
// llOwnerSay ("I=" + (string)I);
// }
// }
for(TokenDeclSDType c = curDeclFunc.sdtClass; c != var.sdtClass; c = c.extends)
{
if(c == null)
{
// our arg0 points to an instance of curDeclFunc.sdtClass, not var.sdtClass
ErrorMsg(lVal, "cannot access instance member of outer class with implied 'this'");
break;
}
}
CompValu thisCompValu = new CompValuArg(var.sdtClass.MakeRefToken(lVal), 0);
return AccessInstanceMember(var, thisCompValu, lVal, false);
}
// It's a local variable, static field, global, constant, etc.
return var.location;
}
/**
* @brief Access a script-defined type's instance member
* @param declVar = which member (field,method,property) to access
* @param basePtr = points to particular object instance
* @param ignoreVirt = true: access declVar's method directly; else: maybe use vTable
* @returns where the field/method/property is located
*/
private CompValu AccessInstanceMember(TokenDeclVar declVar, CompValu basePtr, Token errorAt, bool ignoreVirt)
{
if((declVar.sdtFlags & ScriptReduce.SDT_STATIC) != 0)
{
ErrorMsg(errorAt, "non-static reference to static member " + declVar.name.val);
return new CompValuVoid(declVar);
}
return new CompValuInstMember(declVar, basePtr, ignoreVirt);
}
/**
* @brief we have an L-value token that is a static member within a struct.
* @returns a CompValu giving the type and location of the member in the struct.
*/
private CompValu GenerateFromLValSField(TokenLValSField lVal, TokenType[] argsig)
{
TokenType stType = lVal.baseType;
string fieldName = lVal.fieldName.val + ArgSigString(argsig);
// Maybe they are accessing a static member of a script-defined class.
if (stType is TokenTypeSDTypeClass sdtType)
{
TokenDeclVar declVar = FindThisMember(sdtType.decl, lVal.fieldName, argsig);
if (declVar != null)
{
CheckAccess(declVar, lVal.fieldName);
if ((declVar.sdtFlags & ScriptReduce.SDT_STATIC) == 0)
{
ErrorMsg(lVal.fieldName, "static reference to non-static member " + fieldName);
return new CompValuVoid(lVal.fieldName);
}
return declVar.location;
}
}
ErrorMsg(lVal.fieldName, "no member " + fieldName + " in " + stType.ToString());
return new CompValuVoid(lVal.fieldName);
}
/**
* @brief generate code from an RVal expression and return its type and where the result is stored.
* For anything that has side-effects, statements are generated that perform the computation then
* the result it put in a temp var and the temp var name is returned.
* For anything without side-effects, they are returned as an equivalent sequence of Emits.
* @param rVal = rVal token to be evaluated
* @param argsig = null: not being used in an function/method context
* else: string giving argument types, eg, "(string,integer,list,vector)"
* that can be used to select among overloaded methods
* @returns resultant type and location
*/
private CompValu GenerateFromRVal(TokenRVal rVal)
{
return GenerateFromRVal(rVal, null);
}
private CompValu GenerateFromRVal(TokenRVal rVal, TokenType[] argsig)
{
errorMessageToken = rVal;
// Maybe the expression can be converted to a constant.
bool didOne;
try
{
do
{
didOne = false;
rVal = rVal.TryComputeConstant(LookupBodyConstants, ref didOne);
} while(didOne);
}
catch(Exception ex)
{
ErrorMsg(errorMessageToken, ex.Message);
throw;
}
// Generate code for the computation and return resulting type and location.
CompValu cVal = null;
if(rVal is TokenRValAsnPost TokenRValAsnPostrVal)
cVal = GenerateFromRValAsnPost(TokenRValAsnPostrVal);
else if (rVal is TokenRValAsnPre TokenRValAsnPrerVal)
cVal = GenerateFromRValAsnPre(TokenRValAsnPrerVal);
else if (rVal is TokenRValCall TokenRValCallrVal)
cVal = GenerateFromRValCall(TokenRValCallrVal);
else if (rVal is TokenRValCast TokenRValCastrVal)
cVal = GenerateFromRValCast(TokenRValCastrVal);
else if (rVal is TokenRValCondExpr TokenRValCondExprrVal)
cVal = GenerateFromRValCondExpr(TokenRValCondExprrVal);
else if (rVal is TokenRValConst TokenRValConstrVal)
cVal = GenerateFromRValConst(TokenRValConstrVal);
else if (rVal is TokenRValInitDef TokenRValInitDefrVal)
cVal = GenerateFromRValInitDef(TokenRValInitDefrVal);
else if (rVal is TokenRValIsType TokenRValIsTyperVal)
cVal = GenerateFromRValIsType(TokenRValIsTyperVal);
else if (rVal is TokenRValList TokenRValListrVal)
cVal = GenerateFromRValList(TokenRValListrVal);
else if (rVal is TokenRValNewArIni TokenRValNewArInirVal)
cVal = GenerateFromRValNewArIni(TokenRValNewArInirVal);
else if (rVal is TokenRValOpBin TokenRValOpBinrVal)
cVal = GenerateFromRValOpBin(TokenRValOpBinrVal);
else if (rVal is TokenRValOpUn TokenRValOpUnrVal)
cVal = GenerateFromRValOpUn(TokenRValOpUnrVal);
else if (rVal is TokenRValParen TokenRValParenrVal)
cVal = GenerateFromRValParen(TokenRValParenrVal);
else if (rVal is TokenRValRot TokenRValRotrVal)
cVal = GenerateFromRValRot(TokenRValRotrVal);
else if (rVal is TokenRValThis TokenRValThisrVal)
cVal = GenerateFromRValThis(TokenRValThisrVal);
else if (rVal is TokenRValUndef TokenRValUndefrVal)
cVal = GenerateFromRValUndef(TokenRValUndefrVal);
else if (rVal is TokenRValVec TokenRValVecrVal)
cVal = GenerateFromRValVec(TokenRValVecrVal);
else if (rVal is TokenLVal TokenLValrVal)
cVal = GenerateFromLVal(TokenLValrVal, argsig);
if(cVal == null)
throw new Exception("bad rval class " + rVal.GetType().ToString());
// Sanity check.
if(!youveAnError)
{
if(cVal.type == null)
throw new Exception("cVal has no type " + cVal.GetType());
string cValType = cVal.type.ToString();
string rValType = rVal.GetRValType(this, argsig).ToString();
if(cValType == "bool")
cValType = "integer";
if(rValType == "bool")
rValType = "integer";
if(cValType != rValType)
{
throw new Exception("cVal.type " + cValType + " != rVal.type " + rValType +
" (" + rVal.GetType().Name + " " + rVal.SrcLoc + ")");
}
}
return cVal;
}
/**
* @brief compute the result of a binary operator (eg, add, subtract, multiply, lessthan)
* @param token = binary operator token, includes the left and right operands
* @returns where the resultant R-value is as something that doesn't have side effects
*/
private CompValu GenerateFromRValOpBin(TokenRValOpBin token)
{
CompValu left, right;
string opcodeIndex = token.opcode.ToString();
// Comma operators are special, as they say to compute the left-hand value and
// discard it, then compute the right-hand argument and that is the result.
if(opcodeIndex == ",")
{
// Compute left-hand operand but throw away result.
GenerateFromRVal(token.rValLeft);
// Compute right-hand operand and that is the value of the expression.
return GenerateFromRVal(token.rValRight);
}
// Simple overwriting assignments are their own special case,
// as we want to cast the R-value to the type of the L-value.
// And in the case of delegates, we want to use the arg signature
// of the delegate to select which overloaded method to use.
if(opcodeIndex == "=")
{
if(token.rValLeft is not TokenLVal)
{
ErrorMsg(token, "invalid L-value for =");
return GenerateFromRVal(token.rValLeft);
}
left = GenerateFromLVal((TokenLVal)token.rValLeft);
right = Trivialize(GenerateFromRVal(token.rValRight, left.GetArgTypes()), token.rValRight);
left.PopPre(this, token.rValLeft);
right.PushVal(this, token.rValRight, left.type); // push (left.type)right
left.PopPost(this, token.rValLeft); // pop to left
return left;
}
// There are String.Concat() methods available for 2, 3 and 4 operands.
// So see if we have a string concat op and optimize if so.
if((opcodeIndex == "+") ||
((opcodeIndex == "+=") &&
(token.rValLeft is TokenLVal) &&
(token.rValLeft.GetRValType(this, null) is TokenTypeStr)))
{
// We are adding something. Maybe it's a bunch of strings together.
List<TokenRVal> scorvs = new ();
if(StringConcatOperands(token.rValLeft, token.rValRight, scorvs, token.opcode))
{
// Evaluate all the operands, right-to-left on purpose per LSL scripting.
int i;
int n = scorvs.Count;
CompValu[] scocvs = new CompValu[n];
for(i = n; --i >= 0;)
{
scocvs[i] = GenerateFromRVal(scorvs[i]);
if(i > 0)
scocvs[i] = Trivialize(scocvs[i], scorvs[i]);
}
/*
* Figure out where to put the result.
* A temp if '+', or back in original L-value if '+='.
*/
CompValu retcv;
if(opcodeIndex == "+")
{
retcv = new CompValuTemp(new TokenTypeStr(token.opcode), this);
}
else
{
retcv = GenerateFromLVal((TokenLVal)token.rValLeft);
}
retcv.PopPre(this, token);
// Call the String.Concat() methods, passing operands in left-to-right order.
// Force a cast to string (retcv.type) for each operand.
++i;
scocvs[i].PushVal(this, scorvs[i], retcv.type);
while(i + 3 < n)
{
++i;
scocvs[i].PushVal(this, scorvs[i], retcv.type);
++i;
scocvs[i].PushVal(this, scorvs[i], retcv.type);
++i;
scocvs[i].PushVal(this, scorvs[i], retcv.type);
ilGen.Emit(scorvs[i], OpCodes.Call, stringConcat4MethodInfo);
}
if(i + 2 < n)
{
++i;
scocvs[i].PushVal(this, scorvs[i], retcv.type);
++i;
scocvs[i].PushVal(this, scorvs[i], retcv.type);
ilGen.Emit(scorvs[i], OpCodes.Call, stringConcat3MethodInfo);
}
if(i + 1 < n)
{
++i;
scocvs[i].PushVal(this, scorvs[i], retcv.type);
ilGen.Emit(scorvs[i], OpCodes.Call, stringConcat2MethodInfo);
}
// Put the result where we want it and return where we put it.
retcv.PopPost(this, token);
return retcv;
}
}
// If "&&&", it is a short-circuiting AND.
// Compute left-hand operand and if true, compute right-hand operand.
if(opcodeIndex == "&&&")
{
bool rightVal;
left = GenerateFromRVal(token.rValLeft);
if(!IsConstBoolExpr(left, out bool leftVal))
{
ScriptMyLabel falseLabel = ilGen.DefineLabel("ssandfalse");
left.PushVal(this, tokenTypeBool);
ilGen.Emit(token, OpCodes.Brfalse, falseLabel);
right = GenerateFromRVal(token.rValRight);
if(!IsConstBoolExpr(right, out rightVal))
{
right.PushVal(this, tokenTypeBool);
goto donessand;
}
if(!rightVal)
{
ilGen.MarkLabel(falseLabel);
return new CompValuInteger(new TokenTypeInt(token.rValLeft), 0);
}
ilGen.Emit(token, OpCodes.Ldc_I4_1);
donessand:
ScriptMyLabel doneLabel = ilGen.DefineLabel("ssanddone");
ilGen.Emit(token, OpCodes.Br, doneLabel);
ilGen.MarkLabel(falseLabel);
ilGen.Emit(token, OpCodes.Ldc_I4_0);
ilGen.MarkLabel(doneLabel);
CompValuTemp retRVal = new (new TokenTypeInt(token), this);
retRVal.Pop(this, token);
return retRVal;
}
if(!leftVal)
{
return new CompValuInteger(new TokenTypeInt(token.rValLeft), 0);
}
right = GenerateFromRVal(token.rValRight);
if(!IsConstBoolExpr(right, out rightVal))
{
right.PushVal(this, tokenTypeBool);
CompValuTemp retRVal = new (new TokenTypeInt(token), this);
retRVal.Pop(this, token);
return retRVal;
}
return new CompValuInteger(new TokenTypeInt(token), rightVal ? 1 : 0);
}
// If "|||", it is a short-circuiting OR.
// Compute left-hand operand and if false, compute right-hand operand.
if(opcodeIndex == "|||")
{
bool rightVal;
left = GenerateFromRVal(token.rValLeft);
if(!IsConstBoolExpr(left, out bool leftVal))
{
ScriptMyLabel trueLabel = ilGen.DefineLabel("ssortrue");
left.PushVal(this, tokenTypeBool);
ilGen.Emit(token, OpCodes.Brtrue, trueLabel);
right = GenerateFromRVal(token.rValRight);
if(!IsConstBoolExpr(right, out rightVal))
{
right.PushVal(this, tokenTypeBool);
goto donessor;
}
if(rightVal)
{
ilGen.MarkLabel(trueLabel);
return new CompValuInteger(new TokenTypeInt(token.rValLeft), 1);
}
ilGen.Emit(token, OpCodes.Ldc_I4_0);
donessor:
ScriptMyLabel doneLabel = ilGen.DefineLabel("ssanddone");
ilGen.Emit(token, OpCodes.Br, doneLabel);
ilGen.MarkLabel(trueLabel);
ilGen.Emit(token, OpCodes.Ldc_I4_1);
ilGen.MarkLabel(doneLabel);
CompValuTemp retRVal = new (new TokenTypeInt(token), this);
retRVal.Pop(this, token);
return retRVal;
}
if(leftVal)
{
return new CompValuInteger(new TokenTypeInt(token.rValLeft), 1);
}
right = GenerateFromRVal(token.rValRight);
if(!IsConstBoolExpr(right, out rightVal))
{
right.PushVal(this, tokenTypeBool);
CompValuTemp retRVal = new (new TokenTypeInt(token), this);
retRVal.Pop(this, token);
return retRVal;
}
return new CompValuInteger(new TokenTypeInt(token), rightVal ? 1 : 0);
}
// Computation of some sort, compute right-hand operand value then left-hand value
// because LSL is supposed to be right-to-left evaluation.
right = Trivialize(GenerateFromRVal(token.rValRight), token.rValRight);
// If left is a script-defined class and there is a method with the operator's name,
// convert this to a call to that method with the right value as its single parameter.
// Except don't if the right value is 'undef' so they can always compare to undef.
TokenType leftType = token.rValLeft.GetRValType(this, null);
if((leftType is TokenTypeSDTypeClass sdtType) && right.type is not TokenTypeUndef)
{
TokenDeclSDTypeClass sdtDecl = sdtType.decl;
TokenType[] argsig = new TokenType[] { right.type };
TokenName funcName = new (token.opcode, "$op" + opcodeIndex);
TokenDeclVar declFunc = FindThisMember(sdtDecl, funcName, argsig);
if(declFunc != null)
{
CheckAccess(declFunc, funcName);
left = GenerateFromRVal(token.rValLeft);
CompValu method = AccessInstanceMember(declFunc, left, token, false);
CompValu[] argRVals = new CompValu[] { right };
return GenerateACall(method, argRVals, token);
}
}
// Formulate key string for binOpStrings = (lefttype)(operator)(righttype)
string leftIndex = leftType.ToString();
string rightIndex = right.type.ToString();
string key = leftIndex + opcodeIndex + rightIndex;
// If that key exists in table, then the operation is defined between those types
// ... and it produces an R-value of type as given in the table.
if (BinOpStr.defined.TryGetValue(key, out BinOpStr binOpStr))
{
// If table contained an explicit assignment type like +=, output the statement without
// casting the L-value, then return the L-value as the resultant value.
//
// Make sure we don't include comparisons (such as ==, >=, etc).
// Nothing like +=, -=, %=, etc, generate a boolean, only the comparisons.
if ((binOpStr.outtype != typeof(bool)) && opcodeIndex.EndsWith("=") && (opcodeIndex != "!="))
{
if (token.rValLeft is not TokenLVal)
{
ErrorMsg(token.rValLeft, "invalid L-value");
return GenerateFromRVal(token.rValLeft);
}
left = GenerateFromLVal((TokenLVal)token.rValLeft);
binOpStr.emitBO(this, token, left, right, left);
return left;
}
// It's of the form left binop right.
// Compute left, perform operation then put result in a temp.
left = GenerateFromRVal(token.rValLeft);
CompValu retRVal = new CompValuTemp(TokenType.FromSysType(token.opcode, binOpStr.outtype), this);
binOpStr.emitBO(this, token, left, right, retRVal);
return retRVal;
}
// Nothing in the table, check for comparing object pointers because of the myriad of types possible.
// This will compare list pointers, null pointers, script-defined type pointers, array pointers, etc.
// It will show equal iff the memory addresses are equal and that is good enough.
if (!leftType.ToSysType().IsValueType && !right.type.ToSysType().IsValueType && ((opcodeIndex == "==") || (opcodeIndex == "!=")))
{
CompValuTemp retRVal = new (new TokenTypeInt(token), this);
left = GenerateFromRVal(token.rValLeft);
left.PushVal(this, token.rValLeft);
right.PushVal(this, token.rValRight);
ilGen.Emit(token, OpCodes.Ceq);
if(opcodeIndex == "!=")
{
ilGen.Emit(token, OpCodes.Ldc_I4_1);
ilGen.Emit(token, OpCodes.Xor);
}
retRVal.Pop(this, token);
return retRVal;
}
// If the opcode ends with "=", it may be something like "+=".
// So look up the key as if we didn't have the "=" to tell us if the operation is legal.
// Also, the binary operation's output type must be the same as the L-value type.
// Likewise, integer += float not allowed because result is float, but float += integer is ok.
if(opcodeIndex.EndsWith("="))
{
string op = opcodeIndex[..^1];
key = leftIndex + op + rightIndex;
if(BinOpStr.defined.TryGetValue(key, out binOpStr))
{
if(token.rValLeft is not TokenLVal)
{
ErrorMsg(token, "invalid L-value for <op>=");
return GenerateFromRVal(token.rValLeft);
}
if(!binOpStr.rmwOK)
{
ErrorMsg(token, "<op>= not allowed: " + leftIndex + " " + opcodeIndex + " " + rightIndex);
return new CompValuVoid(token);
}
// Now we know for something like %= that left%right is legal for the types given.
left = GenerateFromLVal((TokenLVal)token.rValLeft);
if(binOpStr.outtype == leftType.ToSysType())
{
binOpStr.emitBO(this, token, left, right, left);
}
else
{
CompValu temp = new CompValuTemp(TokenType.FromSysType(token, binOpStr.outtype), this);
binOpStr.emitBO(this, token, left, right, temp);
left.PopPre(this, token);
if(op == "*")
temp.PushVal(this, token, leftType, true);
else
temp.PushVal(this, token, leftType);
left.PopPost(this, token);
}
return left;
}
}
// Can't find it, oh well.
ErrorMsg(token, "op not defined: " + leftIndex + " " + opcodeIndex + " " + rightIndex);
return new CompValuVoid(token);
}
/**
* @brief Queue the given operands to the end of the scos list.
* If it can be broken down into more string concat operands, do so.
* Otherwise, just push it as one operand.
* @param leftRVal = left-hand operand of a '+' operation
* @param rightRVal = right-hand operand of a '+' operation
* @param scos = left-to-right list of operands for the string concat so far
* @param addop = the add operator token (either '+' or '+=')
* @returns false: neither operand is a string, nothing added to scos
* true: scos = updated with leftRVal then rightRVal added onto the end, possibly broken down further
*/
private bool StringConcatOperands(TokenRVal leftRVal, TokenRVal rightRVal, List<TokenRVal> scos, TokenKw addop)
{
/*
* If neither operand is a string (eg, float+integer), then the result isn't going to be a string.
*/
TokenType leftType = leftRVal.GetRValType(this, null);
TokenType rightType = rightRVal.GetRValType(this, null);
if(leftType is not TokenTypeStr && rightType is not TokenTypeStr)
return false;
// Also, list+string => list so reject that too.
// Also, string+list => list so reject that too.
if(leftType is TokenTypeList)
return false;
if(rightType is TokenTypeList)
return false;
// Append values to the end of the list in left-to-right order.
// If value is formed from a something+something => string,
// push them as separate values, otherwise push as one value.
StringConcatOperand(leftType, leftRVal, scos);
StringConcatOperand(rightType, rightRVal, scos);
// Maybe constant strings can be concatted.
try
{
int len;
while(((len = scos.Count) >= 2) &&
((leftRVal = scos[len - 2]) is TokenRValConst) &&
((rightRVal = scos[len - 1]) is TokenRValConst))
{
object sum = addop.binOpConst(((TokenRValConst)leftRVal).val,
((TokenRValConst)rightRVal).val);
scos[len - 2] = new TokenRValConst(addop, sum);
scos.RemoveAt(len - 1);
}
}
catch
{
}
// We pushed some string stuff.
return true;
}
/**
* @brief Queue the given operand to the end of the scos list.
* If it can be broken down into more string concat operands, do so.
* Otherwise, just push it as one operand.
* @param type = rVal's resultant type
* @param rVal = operand to examine
* @param scos = left-to-right list of operands for the string concat so far
* @returns with scos = updated with rVal added onto the end, possibly broken down further
*/
private void StringConcatOperand(TokenType type, TokenRVal rVal, List<TokenRVal> scos)
{
bool didOne;
do
{
didOne = false;
rVal = rVal.TryComputeConstant(LookupBodyConstants, ref didOne);
} while(didOne);
if(type is not TokenTypeStr)
goto pushasis;
if(rVal is not TokenRValOpBin)
goto pushasis;
TokenRValOpBin rValOpBin = (TokenRValOpBin)rVal;
if(rValOpBin.opcode is not TokenKwAdd)
goto pushasis;
if(StringConcatOperands(rValOpBin.rValLeft, rValOpBin.rValRight, scos, rValOpBin.opcode))
return;
pushasis:
scos.Add(rVal);
}
/**
* @brief compute the result of an unary operator
* @param token = unary operator token, includes the operand
* @returns where the resultant R-value is
*/
private CompValu GenerateFromRValOpUn(TokenRValOpUn token)
{
CompValu inRVal = GenerateFromRVal(token.rVal);
// Script-defined types can define their own methods to handle unary operators.
if (inRVal.type is TokenTypeSDTypeClass sdtType)
{
TokenDeclSDTypeClass sdtDecl = sdtType.decl;
TokenName funcName = new (token.opcode, "$op" + token.opcode.ToString());
TokenDeclVar declFunc = FindThisMember(sdtDecl, funcName, zeroArgs);
if (declFunc != null)
{
CheckAccess(declFunc, funcName);
CompValu method = AccessInstanceMember(declFunc, inRVal, token, false);
return GenerateACall(method, zeroCompValus, token);
}
}
// Otherwise use the default.
return UnOpGenerate(inRVal, token.opcode);
}
/**
* @brief postfix operator -- this returns the type and location of the resultant value
*/
private CompValu GenerateFromRValAsnPost(TokenRValAsnPost asnPost)
{
CompValu lVal = GenerateFromLVal(asnPost.lVal);
// Make up a temp to save original value in.
CompValuTemp result = new (lVal.type, this);
// Prepare to pop incremented value back into variable being incremented.
lVal.PopPre(this, asnPost.lVal);
// Copy original value to temp and leave value on stack.
lVal.PushVal(this, asnPost.lVal);
ilGen.Emit(asnPost.lVal, OpCodes.Dup);
result.Pop(this, asnPost.lVal);
// Perform the ++/--.
if((lVal.type is TokenTypeChar) || (lVal.type is TokenTypeInt))
{
ilGen.Emit(asnPost, OpCodes.Ldc_I4_1);
}
else if(lVal.type is TokenTypeFloat)
{
ilGen.Emit(asnPost, OpCodes.Ldc_R4, 1.0f);
}
else
{
lVal.PopPost(this, asnPost.lVal);
ErrorMsg(asnPost, "invalid type for " + asnPost.postfix.ToString());
return lVal;
}
switch(asnPost.postfix.ToString())
{
case "++":
{
ilGen.Emit(asnPost, OpCodes.Add);
break;
}
case "--":
{
ilGen.Emit(asnPost, OpCodes.Sub);
break;
}
default:
throw new Exception("unknown asnPost op");
}
// Store new value in original variable.
lVal.PopPost(this, asnPost.lVal);
return result;
}
/**
* @brief prefix operator -- this returns the type and location of the resultant value
*/
private CompValu GenerateFromRValAsnPre(TokenRValAsnPre asnPre)
{
CompValu lVal = GenerateFromLVal(asnPre.lVal);
// Make up a temp to put result in.
CompValuTemp result = new (lVal.type, this);
// Prepare to pop incremented value back into variable being incremented.
lVal.PopPre(this, asnPre.lVal);
// Push original value.
lVal.PushVal(this, asnPre.lVal);
// Perform the ++/--.
if((lVal.type is TokenTypeChar) || (lVal.type is TokenTypeInt))
{
ilGen.Emit(asnPre, OpCodes.Ldc_I4_1);
}
else if(lVal.type is TokenTypeFloat)
{
ilGen.Emit(asnPre, OpCodes.Ldc_R4, 1.0f);
}
else
{
lVal.PopPost(this, asnPre.lVal);
ErrorMsg(asnPre, "invalid type for " + asnPre.prefix.ToString());
return lVal;
}
switch(asnPre.prefix.ToString())
{
case "++":
{
ilGen.Emit(asnPre, OpCodes.Add);
break;
}
case "--":
{
ilGen.Emit(asnPre, OpCodes.Sub);
break;
}
default:
throw new Exception("unknown asnPre op");
}
// Store new value in temp variable, keeping new value on stack.
ilGen.Emit(asnPre.lVal, OpCodes.Dup);
result.Pop(this, asnPre.lVal);
// Store new value in original variable.
lVal.PopPost(this, asnPre.lVal);
return result;
}
/**
* @brief Generate code that calls a function or object's method.
* @returns where the call's return value is stored (a TokenTypeVoid if void)
*/
private CompValu GenerateFromRValCall(TokenRValCall call)
{
CompValu method;
CompValu[] argRVals;
int i, nargs;
TokenRVal arg;
TokenType[] argTypes;
// Compute the values of all the function's call arguments.
// Save where the computation results are in the argRVals[] array.
// Might as well build the argument signature from the argument types, too.
nargs = call.nArgs;
argRVals = new CompValu[nargs];
argTypes = new TokenType[nargs];
if(nargs > 0)
{
i = 0;
for(arg = call.args; arg != null; arg = (TokenRVal)arg.nextToken)
{
argRVals[i] = GenerateFromRVal(arg);
argTypes[i] = argRVals[i].type;
i++;
}
}
// Get function/method's entrypoint that matches the call argument types.
method = GenerateFromRVal(call.meth, argTypes);
if(method == null)
return null;
return GenerateACall(method, argRVals, call);
}
/**
* @brief Generate call to a function/method.
* @param method = function/method being called
* @param argVRVals = its call parameters (zero length if none)
* @param call = where in source code call is being made from (for error messages)
* @returns type and location of return value (CompValuVoid if none)
*/
private CompValu GenerateACall(CompValu method, CompValu[] argRVals, Token call)
{
CompValuTemp result;
int i, nArgs;
TokenType retType;
TokenType[] argTypes;
// Must be some kind of callable.
retType = method.GetRetType(); // TokenTypeVoid if void; null means a variable
if(retType == null)
{
ErrorMsg(call, "must be a delegate, function or method");
return new CompValuVoid(call);
}
// Get a location for return value.
if(retType is TokenTypeVoid)
{
result = new CompValuVoid(call);
}
else
{
result = new CompValuTemp(retType, this);
}
// Make sure all arguments are trivial, ie, don't involve their own call labels.
// For any that aren't, output code to calculate the arg and put in a temporary.
nArgs = argRVals.Length;
for(i = 0; i < nArgs; i++)
{
if(!argRVals[i].IsReadTrivial(this, call))
{
argRVals[i] = Trivialize(argRVals[i], call);
}
}
// Inline functions know how to generate their own call.
if (method is CompValuInline inline)
{
inline.declInline.CodeGen(this, call, result, argRVals);
return result;
}
// Push whatever the function/method needs as a this argument, if anything.
method.CallPre(this, call);
// Push the script-visible args, left-to-right.
argTypes = method.GetArgTypes();
for(i = 0; i < nArgs; i++)
{
if(argTypes == null)
{
argRVals[i].PushVal(this, call);
}
else
{
argRVals[i].PushVal(this, call, argTypes[i]);
}
}
// Now output call instruction.
method.CallPost(this, call);
// Deal with the return value (if any), by putting it in 'result'.
result.Pop(this, call, retType);
return result;
}
/**
* @brief This is needed to avoid nesting call labels around non-trivial properties.
* It should be used for the second (and later) operands.
* Note that a 'call' is considered an operator, so all arguments of a call
* should be trivialized, but the method itself does not need to be.
*/
public CompValu Trivialize(CompValu operand, Token errorAt)
{
if(operand.IsReadTrivial(this, errorAt))
return operand;
CompValuTemp temp = new (operand.type, this);
operand.PushVal(this, errorAt);
temp.Pop(this, errorAt);
return temp;
}
/**
* @brief Generate code that casts a value to a particular type.
* @returns where the result of the conversion is stored.
*/
private CompValu GenerateFromRValCast(TokenRValCast cast)
{
// If casting to a delegate type, use the argment signature
// of the delegate to help select the function/method, eg,
// '(delegate string(integer))ToString'
// will select 'string ToString(integer x)'
// instaead of 'string ToString(float x)' or anything else
TokenType[] argsig = null;
TokenType outType = cast.castTo;
if(outType is TokenTypeSDTypeDelegate TokenTypeSDTypeDelegateoutType)
{
argsig = TokenTypeSDTypeDelegateoutType.decl.GetArgTypes();
}
// Generate the value that is being cast.
// If the value is already the requested type, just use it as is.
CompValu inRVal = GenerateFromRVal(cast.rVal, argsig);
if(inRVal.type == outType)
return inRVal;
// Different type, generate casting code, putting the result in a temp of the output type.
CompValu outRVal = new CompValuTemp(outType, this);
outRVal.PopPre(this, cast);
inRVal.PushVal(this, cast, outType, true);
outRVal.PopPost(this, cast);
return outRVal;
}
/**
* @brief Compute conditional expression value.
* @returns type and location of computed value.
*/
private CompValu GenerateFromRValCondExpr(TokenRValCondExpr rValCondExpr)
{
CompValu condValu = GenerateFromRVal(rValCondExpr.condExpr);
if (IsConstBoolExpr(condValu, out bool condVal))
{
return GenerateFromRVal(condVal ? rValCondExpr.trueExpr : rValCondExpr.falseExpr);
}
ScriptMyLabel falseLabel = ilGen.DefineLabel("condexfalse");
ScriptMyLabel doneLabel = ilGen.DefineLabel("condexdone");
condValu.PushVal(this, rValCondExpr.condExpr, tokenTypeBool);
ilGen.Emit(rValCondExpr, OpCodes.Brfalse, falseLabel);
CompValu trueValu = GenerateFromRVal(rValCondExpr.trueExpr);
trueValu.PushVal(this, rValCondExpr.trueExpr);
ilGen.Emit(rValCondExpr, OpCodes.Br, doneLabel);
ilGen.MarkLabel(falseLabel);
CompValu falseValu = GenerateFromRVal(rValCondExpr.falseExpr);
falseValu.PushVal(this, rValCondExpr.falseExpr);
if(trueValu.type.GetType() != falseValu.type.GetType())
{
ErrorMsg(rValCondExpr, "? operands " + trueValu.type.ToString() + " : " +
falseValu.type.ToString() + " must be of same type");
}
ilGen.MarkLabel(doneLabel);
CompValuTemp retRVal = new (trueValu.type, this);
retRVal.Pop(this, rValCondExpr);
return retRVal;
}
/**
* @brief Constant in the script somewhere
* @returns where the constants value is stored
*/
private static CompValu GenerateFromRValConst(TokenRValConst rValConst)
{
switch(rValConst.type)
{
case TokenRValConstType.CHAR:
{
return new CompValuChar(new TokenTypeChar(rValConst), (char)(rValConst.val));
}
case TokenRValConstType.FLOAT:
{
return new CompValuFloat(new TokenTypeFloat(rValConst), (double)(rValConst.val));
}
case TokenRValConstType.INT:
{
return new CompValuInteger(new TokenTypeInt(rValConst), (int)(rValConst.val));
}
case TokenRValConstType.KEY:
{
return new CompValuString(new TokenTypeKey(rValConst), (string)(rValConst.val));
}
case TokenRValConstType.STRING:
{
return new CompValuString(new TokenTypeStr(rValConst), (string)(rValConst.val));
}
}
throw new Exception("unknown constant type " + rValConst.val.GetType());
}
/**
* @brief generate a new list object
* @param rValList = an rVal to create it from
*/
private CompValu GenerateFromRValList(TokenRValList rValList)
{
// Compute all element values and remember where we put them.
// Do it right-to-left as customary for LSL scripts.
int i = 0;
TokenRVal lastRVal = null;
for(TokenRVal val = rValList.rVal; val != null; val = (TokenRVal)val.nextToken)
{
i++;
val.prevToken = lastRVal;
lastRVal = val;
}
CompValu[] vals = new CompValu[i];
for(TokenRVal val = lastRVal; val != null; val = (TokenRVal)val.prevToken)
{
vals[--i] = GenerateFromRVal(val);
}
// This is the temp that will hold the created list.
CompValuTemp newList = new (new TokenTypeList(rValList.rVal), this);
// Create a temp object[] array to hold all the initial values.
ilGen.Emit(rValList, OpCodes.Ldc_I4, rValList.nItems);
ilGen.Emit(rValList, OpCodes.Newarr, typeof(object));
// Populate the array.
i = 0;
for(TokenRVal val = rValList.rVal; val != null; val = (TokenRVal)val.nextToken)
{
// Get pointer to temp array object.
ilGen.Emit(rValList, OpCodes.Dup);
// Get index in that array.
ilGen.Emit(rValList, OpCodes.Ldc_I4, i);
// Store initialization value in array location.
// However, floats and ints need to be converted to LSL_Float and LSL_Integer,
// or things like llSetPayPrice() will puque when they try to cast the elements
// to LSL_Float or LSL_Integer. Likewise with string/LSL_String.
//
// Maybe it's already LSL-boxed so we don't do anything with it except make sure
// it is an object, not a struct.
CompValu eRVal = vals[i++];
eRVal.PushVal(this, val);
if(eRVal.type.ToLSLWrapType() == null)
{
if(eRVal.type is TokenTypeFloat)
{
ilGen.Emit(val, OpCodes.Newobj, lslFloatConstructorInfo);
ilGen.Emit(val, OpCodes.Box, typeof(LSL_Float));
}
else if (eRVal.type is TokenTypeInt)
{
ilGen.Emit(val, OpCodes.Newobj, lslIntegerConstructorInfo);
ilGen.Emit(val, OpCodes.Box, typeof(LSL_Integer));
}
else if (eRVal.type is TokenTypeBool)
{
ilGen.Emit(val, OpCodes.Newobj, lslIntegerConstructorInfo);
ilGen.Emit(val, OpCodes.Box, typeof(LSL_Integer));
}
else if ((eRVal.type is TokenTypeKey) || (eRVal.type is TokenTypeStr))
{
ilGen.Emit(val, OpCodes.Newobj, lslStringConstructorInfo);
ilGen.Emit(val, OpCodes.Box, typeof(LSL_String));
}
else if(eRVal.type.ToSysType().IsValueType)
{
ilGen.Emit(val, OpCodes.Box, eRVal.type.ToSysType());
}
}
else if(eRVal.type.ToLSLWrapType().IsValueType)
{
// Convert the LSL value structs to an object of the LSL-boxed type
ilGen.Emit(val, OpCodes.Box, eRVal.type.ToLSLWrapType());
}
ilGen.Emit(val, OpCodes.Stelem, typeof(object));
}
// Create new list object from temp initial value array (whose ref is still on the stack).
ilGen.Emit(rValList, OpCodes.Newobj, lslListConstructorInfo);
newList.Pop(this, rValList);
return newList;
}
/**
* @brief New array allocation with initializer expressions.
*/
private CompValu GenerateFromRValNewArIni(TokenRValNewArIni rValNewArIni)
{
return MallocAndInitArray(rValNewArIni.arrayType, rValNewArIni.valueList);
}
/**
* @brief Mallocate and initialize an array from its initialization list.
* @param arrayType = type of the array to be allocated and initialized
* @param values = initialization value list used to size and initialize the array.
* @returns memory location of the resultant initialized array.
*/
private CompValu MallocAndInitArray(TokenType arrayType, TokenList values)
{
TokenDeclSDTypeClass arrayDecl = ((TokenTypeSDTypeClass)arrayType).decl;
TokenType eleType = arrayDecl.arrayOfType;
int rank = arrayDecl.arrayOfRank;
// Get size of each of the dimensions by scanning the initialization value list
int[] dimSizes = new int[rank];
FillInDimSizes(dimSizes, 0, rank, values);
// Figure out where the array's $new() method is
TokenType[] newargsig = new TokenType[rank];
for(int k = 0; k < rank; k++)
{
newargsig[k] = tokenTypeInt;
}
TokenDeclVar newMeth = FindThisMember(arrayDecl, new TokenName(null, "$new"), newargsig);
// Output a call to malloc the array with all default values
// array = ArrayType.$new (dimSizes[0], dimSizes[1], ...)
CompValuTemp array = new (arrayType, this);
PushXMRInst();
for(int k = 0; k < rank; k++)
{
ilGen.Emit(values, OpCodes.Ldc_I4, dimSizes[k]);
}
ilGen.Emit(values, OpCodes.Call, newMeth.ilGen);
array.Pop(this, arrayType);
// Figure out where the array's Set() method is
TokenType[] setargsig = new TokenType[rank + 1];
for(int k = 0; k < rank; k++)
{
setargsig[k] = tokenTypeInt;
}
setargsig[rank] = eleType;
TokenDeclVar setMeth = FindThisMember(arrayDecl, new TokenName(null, "Set"), setargsig);
// Fill in the array with the initializer values
FillInInitVals(array, setMeth, dimSizes, 0, rank, values, eleType);
// The array is our resultant value
return array;
}
/**
* @brief Compute an array's dimensions given its initialization value list
* @param dimSizes = filled in with array's dimensions
* @param dimNo = what dimension the 'values' list applies to
* @param rank = total number of dimensions of the array
* @param values = list of values to initialize the array's 'dimNo' dimension with
* @returns with dimSizes[dimNo..rank-1] filled in
*/
private static void FillInDimSizes(int[] dimSizes, int dimNo, int rank, TokenList values)
{
// the size of a dimension is the largest number of initializer elements at this level
// for dimNo 0, this is the number of elements in the top-level list
if(dimSizes[dimNo] < values.tl.Count)
dimSizes[dimNo] = values.tl.Count;
// see if there is another dimension to calculate
if(++dimNo < rank)
{
// its size is the size of the largest initializer list at the next inner level
foreach(Token val in values.tl)
{
if (val is TokenList subvals)
{
FillInDimSizes(dimSizes, dimNo, rank, subvals);
}
}
}
}
/**
* @brief Output code to fill in array's initialization values
* @param array = array to be filled in
* @param setMeth = the array's Set() method
* @param subscripts = holds subscripts being built
* @param dimNo = which dimension the 'values' are for
* @param values = list of initialization values for dimension 'dimNo'
* @param rank = number of dimensions of 'array'
* @param values = list of values to initialize the array's 'dimNo' dimension with
* @param eleType = the element's type
* @returns with code emitted to initialize array's [subscripts[0], ..., subscripts[dimNo-1], *, *, ...]
* dimNo and up completely filled ---^
*/
private void FillInInitVals(CompValu array, TokenDeclVar setMeth, int[] subscripts, int dimNo, int rank, TokenList values, TokenType eleType)
{
subscripts[dimNo] = 0;
foreach(Token val in values.tl)
{
CompValu initValue = null;
// If it is a sublist, process it.
// If we don't have enough subscripts yet, hopefully that sublist will have enough.
// If we already have enough subscripts, then that sublist can be for an element of this supposedly jagged array.
if (val is TokenList sublist)
{
if (dimNo + 1 < rank)
{
// We don't have enough subscripts yet, hopefully the sublist has the rest.
FillInInitVals(array, setMeth, subscripts, dimNo + 1, rank, sublist, eleType);
}
else if ((eleType is TokenTypeSDTypeClass eleTypeclass) && (eleTypeclass.decl.arrayOfType is null))
{
// If we aren't a jagged array either, we can't do anything with the sublist.
ErrorMsg(val, "too many brace levels");
}
else
{
// We are a jagged array, so malloc a subarray and initialize it with the sublist.
// Then we can use that subarray to fill this array's element.
initValue = MallocAndInitArray(eleType, sublist);
}
}
// If it is a value expression, then output code to compute the value.
if (val is TokenRVal val1)
{
if(dimNo + 1 < rank)
{
ErrorMsg((Token)val, "not enough brace levels");
}
else
{
initValue = GenerateFromRVal(val1);
}
}
// If there is an initValue, output "array.Set (subscript[0], subscript[1], ..., initValue)"
if(initValue != null)
{
array.PushVal(this, val);
for(int i = 0; i <= dimNo; i++)
{
ilGen.Emit(val, OpCodes.Ldc_I4, subscripts[i]);
}
initValue.PushVal(this, val, eleType);
ilGen.Emit(val, OpCodes.Call, setMeth.ilGen);
}
// That subscript is processed one way or another, on to the next.
subscripts[dimNo]++;
}
}
/**
* @brief parenthesized expression
* @returns type and location of the result of the computation.
*/
private CompValu GenerateFromRValParen(TokenRValParen rValParen)
{
return GenerateFromRVal(rValParen.rVal);
}
/**
* @brief create a rotation object from the x,y,z,w value expressions.
*/
private CompValu GenerateFromRValRot(TokenRValRot rValRot)
{
CompValu xRVal, yRVal, zRVal, wRVal;
xRVal = Trivialize(GenerateFromRVal(rValRot.xRVal), rValRot);
yRVal = Trivialize(GenerateFromRVal(rValRot.yRVal), rValRot);
zRVal = Trivialize(GenerateFromRVal(rValRot.zRVal), rValRot);
wRVal = Trivialize(GenerateFromRVal(rValRot.wRVal), rValRot);
return new CompValuRot(new TokenTypeRot(rValRot), xRVal, yRVal, zRVal, wRVal);
}
/**
* @brief Using 'this' as a pointer to the current script-defined instance object.
* The value is located in arg #0 of the current instance method.
*/
private CompValu GenerateFromRValThis(TokenRValThis zhis)
{
if(!IsSDTInstMethod())
{
ErrorMsg(zhis, "cannot access instance member of class from static method");
return new CompValuVoid(zhis);
}
return new CompValuArg(curDeclFunc.sdtClass.MakeRefToken(zhis), 0);
}
/**
* @brief 'undefined' constant.
* If this constant gets written to an array element, it will delete that element from the array.
* If the script retrieves an element by key that is not defined, it will get this value.
* This value can be stored in and retrieved from variables of type 'object' or script-defined classes.
* It is a runtime error to cast this value to any other type, eg,
* we don't allow list or string variables to be null pointers.
*/
private static CompValu GenerateFromRValUndef(TokenRValUndef rValUndef)
{
return new CompValuNull(new TokenTypeUndef(rValUndef));
}
/**
* @brief create a vector object from the x,y,z value expressions.
*/
private CompValu GenerateFromRValVec(TokenRValVec rValVec)
{
CompValu xRVal, yRVal, zRVal;
xRVal = Trivialize(GenerateFromRVal(rValVec.xRVal), rValVec);
yRVal = Trivialize(GenerateFromRVal(rValVec.yRVal), rValVec);
zRVal = Trivialize(GenerateFromRVal(rValVec.zRVal), rValVec);
return new CompValuVec(new TokenTypeVec(rValVec), xRVal, yRVal, zRVal);
}
/**
* @brief Generate code to get the default initialization value for a variable.
*/
private CompValu GenerateFromRValInitDef(TokenRValInitDef rValInitDef)
{
TokenType type = rValInitDef.type;
if(type is TokenTypeChar)
{
return new CompValuChar(type, (char)0);
}
if(type is TokenTypeRot)
{
CompValuFloat x = new (type, ScriptBaseClass.ZERO_ROTATION.x);
CompValuFloat y = new (type, ScriptBaseClass.ZERO_ROTATION.y);
CompValuFloat z = new (type, ScriptBaseClass.ZERO_ROTATION.z);
CompValuFloat s = new (type, ScriptBaseClass.ZERO_ROTATION.s);
return new CompValuRot(type, x, y, z, s);
}
if((type is TokenTypeKey) || (type is TokenTypeStr))
{
return new CompValuString(type, "");
}
if(type is TokenTypeVec)
{
CompValuFloat x = new (type, ScriptBaseClass.ZERO_VECTOR.x);
CompValuFloat y = new (type, ScriptBaseClass.ZERO_VECTOR.y);
CompValuFloat z = new (type, ScriptBaseClass.ZERO_VECTOR.z);
return new CompValuVec(type, x, y, z);
}
if(type is TokenTypeInt)
{
return new CompValuInteger(type, 0);
}
if(type is TokenTypeFloat)
{
return new CompValuFloat(type, 0);
}
if(type is TokenTypeVoid)
{
return new CompValuVoid(type);
}
// Default for 'object' type is 'undef'.
// Likewise for script-defined classes and interfaces.
if((type is TokenTypeObject) || (type is TokenTypeSDTypeClass) || (type is TokenTypeSDTypeDelegate) ||
(type is TokenTypeSDTypeInterface) || (type is TokenTypeExc))
{
return new CompValuNull(type);
}
// array and list
CompValuTemp temp = new (type, this);
PushDefaultValue(type);
temp.Pop(this, rValInitDef, type);
return temp;
}
/**
* @brief Generate code to process an <rVal> is <type> expression, and produce a boolean value.
*/
private CompValu GenerateFromRValIsType(TokenRValIsType rValIsType)
{
// Expression we want to know the type of.
CompValu val = GenerateFromRVal(rValIsType.rValExp);
// Pass it in to top-level type expression decoder.
return GenerateFromTypeExp(val, rValIsType.typeExp);
}
/**
* @brief See if the type of the given value matches the type expression.
* @param val = where the value to be evaluated is stored
* @param typeExp = script tokens representing type expression
* @returns location where the boolean result is stored
*/
private CompValu GenerateFromTypeExp(CompValu val, TokenTypeExp typeExp)
{
if(typeExp is TokenTypeExpBinOp op1)
{
CompValu left = GenerateFromTypeExp(val, op1.leftOp);
CompValu right = GenerateFromTypeExp(val, op1.rightOp);
CompValuTemp result = new (tokenTypeBool, this);
Token op = op1.binOp;
left.PushVal(this, op1.leftOp);
right.PushVal(this, op1.rightOp);
if(op is TokenKwAnd)
{
ilGen.Emit(typeExp, OpCodes.And);
}
else if(op is TokenKwOr)
{
ilGen.Emit(typeExp, OpCodes.Or);
}
else
{
throw new Exception("unknown TokenTypeExpBinOp " + op.GetType());
}
result.Pop(this, typeExp);
return result;
}
if(typeExp is TokenTypeExpNot expnot)
{
CompValu interm = GenerateFromTypeExp(val, expnot.typeExp);
CompValuTemp result = new (tokenTypeBool, this);
interm.PushVal(this, expnot.typeExp, tokenTypeBool);
ilGen.Emit(typeExp, OpCodes.Ldc_I4_1);
ilGen.Emit(typeExp, OpCodes.Xor);
result.Pop(this, typeExp);
return result;
}
if(typeExp is TokenTypeExpPar TokenTypeExpPartypeExp)
{
return GenerateFromTypeExp(val, TokenTypeExpPartypeExp.typeExp);
}
if(typeExp is TokenTypeExpType TokenTypeExpTypetypeExp)
{
CompValuTemp result = new (tokenTypeBool, this);
val.PushVal(this, typeExp);
ilGen.Emit(typeExp, OpCodes.Isinst, TokenTypeExpTypetypeExp.typeToken.ToSysType());
ilGen.Emit(typeExp, OpCodes.Ldnull);
ilGen.Emit(typeExp, OpCodes.Ceq);
ilGen.Emit(typeExp, OpCodes.Ldc_I4_1);
ilGen.Emit(typeExp, OpCodes.Xor);
result.Pop(this, typeExp);
return result;
}
if(typeExp is TokenTypeExpUndef)
{
CompValuTemp result = new (tokenTypeBool, this);
val.PushVal(this, typeExp);
ilGen.Emit(typeExp, OpCodes.Ldnull);
ilGen.Emit(typeExp, OpCodes.Ceq);
result.Pop(this, typeExp);
return result;
}
throw new Exception("unknown TokenTypeExp type " + typeExp.GetType());
}
/**
* @brief Push the default (null) value for a particular variable
* @param var = variable to get the default value for
* @returns with value pushed on stack
*/
public void PushVarDefaultValue(TokenDeclVar var)
{
PushDefaultValue(var.type);
}
public void PushDefaultValue(TokenType type)
{
if(type is TokenTypeArray)
{
PushXMRInst(); // instance
ilGen.Emit(type, OpCodes.Newobj, xmrArrayConstructorInfo);
return;
}
if(type is TokenTypeChar)
{
ilGen.Emit(type, OpCodes.Ldc_I4_0);
return;
}
if(type is TokenTypeList)
{
ilGen.Emit(type, OpCodes.Ldc_I4_0);
ilGen.Emit(type, OpCodes.Newarr, typeof(object));
ilGen.Emit(type, OpCodes.Newobj, lslListConstructorInfo);
return;
}
if(type is TokenTypeRot)
{
// Mono is tOO stOOpid to allow: ilGen.Emit (OpCodes.Ldsfld, zeroRotationFieldInfo);
ilGen.Emit(type, OpCodes.Ldc_R8, ScriptBaseClass.ZERO_ROTATION.x);
ilGen.Emit(type, OpCodes.Ldc_R8, ScriptBaseClass.ZERO_ROTATION.y);
ilGen.Emit(type, OpCodes.Ldc_R8, ScriptBaseClass.ZERO_ROTATION.z);
ilGen.Emit(type, OpCodes.Ldc_R8, ScriptBaseClass.ZERO_ROTATION.s);
ilGen.Emit(type, OpCodes.Newobj, lslRotationConstructorInfo);
return;
}
if((type is TokenTypeKey) || (type is TokenTypeStr))
{
ilGen.Emit(type, OpCodes.Ldstr, "");
return;
}
if(type is TokenTypeVec)
{
// Mono is tOO stOOpid to allow: ilGen.Emit (OpCodes.Ldsfld, zeroVectorFieldInfo);
ilGen.Emit(type, OpCodes.Ldc_R8, ScriptBaseClass.ZERO_VECTOR.x);
ilGen.Emit(type, OpCodes.Ldc_R8, ScriptBaseClass.ZERO_VECTOR.y);
ilGen.Emit(type, OpCodes.Ldc_R8, ScriptBaseClass.ZERO_VECTOR.z);
ilGen.Emit(type, OpCodes.Newobj, lslVectorConstructorInfo);
return;
}
if(type is TokenTypeInt)
{
ilGen.Emit(type, OpCodes.Ldc_I4_0);
return;
}
if(type is TokenTypeFloat)
{
ilGen.Emit(type, OpCodes.Ldc_R4, 0.0f);
return;
}
// Default for 'object' type is 'undef'.
// Likewise for script-defined classes and interfaces.
if((type is TokenTypeObject) || (type is TokenTypeSDTypeClass) || (type is TokenTypeSDTypeInterface) || (type is TokenTypeExc))
{
ilGen.Emit(type, OpCodes.Ldnull);
return;
}
// Void is pushed as the default return value of a void function.
// So just push nothing as expected of void functions.
if(type is TokenTypeVoid)
{
return;
}
// Default for 'delegate' type is 'undef'.
if(type is TokenTypeSDTypeDelegate)
{
ilGen.Emit(type, OpCodes.Ldnull);
return;
}
throw new Exception("unknown type " + type.GetType().ToString());
}
/**
* @brief Determine if the expression has a constant boolean value
* and if so, if the value is true or false.
* @param expr = expression to evaluate
* @returns true: expression is contant and has boolean value true
* false: otherwise
*/
private static bool IsConstBoolExprTrue(CompValu expr)
{
return IsConstBoolExpr(expr, out bool constVal) && constVal;
}
private static bool IsConstBoolExpr(CompValu expr, out bool constVal)
{
if(expr is CompValuChar CompValuCharexpr)
{
constVal = CompValuCharexpr.x != 0;
return true;
}
if(expr is CompValuFloat CompValuFloatexpr)
{
constVal = CompValuFloatexpr.x != 0;
return true;
}
if(expr is CompValuInteger CompValuIntegerexpr)
{
constVal = CompValuIntegerexpr.x != 0;
return true;
}
if(expr is CompValuString CompValuStringexpr)
{
string s = CompValuStringexpr.x;
constVal = s != "";
if(constVal && (expr.type is TokenTypeKey))
{
constVal = s != ScriptBaseClass.NULL_KEY;
}
return true;
}
constVal = false;
return false;
}
/**
* @brief Determine if the expression has a constant integer value
* and if so, return the integer value.
* @param expr = expression to evaluate
* @returns true: expression is contant and has integer value
* false: otherwise
*/
private static bool IsConstIntExpr(CompValu expr, out int constVal)
{
if(expr is CompValuChar CompValuCharexpr)
{
constVal = (int)CompValuCharexpr.x;
return true;
}
if(expr is CompValuInteger CompValuIntegerexpr)
{
constVal = CompValuIntegerexpr.x;
return true;
}
constVal = 0;
return false;
}
/**
* @brief Determine if the expression has a constant string value
* and if so, return the string value.
* @param expr = expression to evaluate
* @returns true: expression is contant and has string value
* false: otherwise
*/
private static bool IsConstStrExpr(CompValu expr, out string constVal)
{
if(expr is CompValuString exprstring)
{
constVal = exprstring.x;
return true;
}
constVal = "";
return false;
}
/**
* @brief create table of legal event handler prototypes.
* This is used to make sure script's event handler declrations are valid.
*/
private static VarDict CreateLegalEventHandlers()
{
// Get handler prototypes with full argument lists.
VarDict leh = new InternalFuncDict(typeof(IEventHandlers), false);
// We want the scripts to be able to declare their handlers with
// fewer arguments than the full argument lists. So define additional
// prototypes with fewer arguments.
TokenDeclVar[] fullArgProtos = new TokenDeclVar[leh.Count];
int i = 0;
foreach(TokenDeclVar fap in leh)
fullArgProtos[i++] = fap;
foreach(TokenDeclVar fap in fullArgProtos)
{
TokenArgDecl fal = fap.argDecl;
int fullArgCount = fal.vars.Length;
for(i = 0; i < fullArgCount; i++)
{
TokenArgDecl shortArgList = new (null);
for(int j = 0; j < i; j++)
{
TokenDeclVar var = fal.vars[j];
shortArgList.AddArg(var.type, var.name);
}
TokenDeclVar shortArgProto = new (null, null, null)
{
name = new TokenName(null, fap.GetSimpleName()),
retType = fap.retType,
argDecl = shortArgList
};
leh.AddEntry(shortArgProto);
}
}
return leh;
}
/**
* @brief Emit a call to CheckRun(), (voluntary multitasking switch)
*/
public void EmitCallCheckRun(Token errorAt, bool stack)
{
if(curDeclFunc.IsFuncTrivial(this))
throw new Exception(curDeclFunc.fullName + " is supposed to be trivial");
_ = new CallLabel(this, errorAt); // jump here when stack restored
PushXMRInst(); // instance
ilGen.Emit(errorAt, OpCodes.Call, stack ? checkRunStackMethInfo : checkRunQuickMethInfo);
openCallLabel = null;
}
/**
* @brief Emit code to push a callNo var on the stack.
*/
public void GetCallNo(Token errorAt, ScriptMyLocal callNoVar)
{
ilGen.Emit(errorAt, OpCodes.Ldloc, callNoVar);
//ilGen.Emit (errorAt, OpCodes.Ldloca, callNoVar);
//ilGen.Emit (errorAt, OpCodes.Volatile);
//ilGen.Emit (errorAt, OpCodes.Ldind_I4);
}
public void GetCallNo(Token errorAt, CompValu callNoVar)
{
callNoVar.PushVal(this, errorAt);
//callNoVar.PushRef (this, errorAt);
//ilGen.Emit (errorAt, OpCodes.Volatile);
//ilGen.Emit (errorAt, OpCodes.Ldind_I4);
}
/**
* @brief Emit code to set a callNo var to a given constant.
*/
public void SetCallNo(Token errorAt, ScriptMyLocal callNoVar, int val)
{
ilGen.Emit(errorAt, OpCodes.Ldc_I4, val);
ilGen.Emit(errorAt, OpCodes.Stloc, callNoVar);
//ilGen.Emit (errorAt, OpCodes.Ldloca, callNoVar);
//ilGen.Emit (errorAt, OpCodes.Ldc_I4, val);
//ilGen.Emit (errorAt, OpCodes.Volatile);
//ilGen.Emit (errorAt, OpCodes.Stind_I4);
}
public void SetCallNo(Token errorAt, CompValu callNoVar, int val)
{
callNoVar.PopPre(this, errorAt);
ilGen.Emit(errorAt, OpCodes.Ldc_I4, val);
callNoVar.PopPost(this, errorAt);
//callNoVar.PushRef (this, errorAt);
//ilGen.Emit (errorAt, OpCodes.Ldc_I4, val);
//ilGen.Emit (errorAt, OpCodes.Volatile);
//ilGen.Emit (errorAt, OpCodes.Stind_I4);
}
/**
* @brief handle a unary operator, such as -x.
*/
private CompValu UnOpGenerate(CompValu inRVal, Token opcode)
{
// - Negate
if(opcode is TokenKwSub)
{
if(inRVal.type is TokenTypeFloat)
{
CompValuTemp outRVal = new (new TokenTypeFloat(opcode), this);
inRVal.PushVal(this, opcode, outRVal.type); // push value to negate, make sure not LSL-boxed
ilGen.Emit(opcode, OpCodes.Neg); // compute the negative
outRVal.Pop(this, opcode); // pop into result
return outRVal; // tell caller where we put it
}
if(inRVal.type is TokenTypeInt)
{
CompValuTemp outRVal = new (new TokenTypeInt(opcode), this);
inRVal.PushVal(this, opcode, outRVal.type); // push value to negate, make sure not LSL-boxed
ilGen.Emit(opcode, OpCodes.Neg); // compute the negative
outRVal.Pop(this, opcode); // pop into result
return outRVal; // tell caller where we put it
}
if(inRVal.type is TokenTypeRot)
{
CompValuTemp outRVal = new (inRVal.type, this);
inRVal.PushVal(this, opcode); // push rotation, then call negate routine
ilGen.Emit(opcode, OpCodes.Call, lslRotationNegateMethodInfo);
outRVal.Pop(this, opcode); // pop into result
return outRVal; // tell caller where we put it
}
if(inRVal.type is TokenTypeVec)
{
CompValuTemp outRVal = new (inRVal.type, this);
inRVal.PushVal(this, opcode); // push vector, then call negate routine
ilGen.Emit(opcode, OpCodes.Call, lslVectorNegateMethodInfo);
outRVal.Pop(this, opcode); // pop into result
return outRVal; // tell caller where we put it
}
if (inRVal.type is TokenTypeBool)
{
CompValuTemp outRVal = new (new TokenTypeInt(opcode), this);
inRVal.PushVal(this, opcode, outRVal.type); // push value to negate, make sure not LSL-boxed
ilGen.Emit(opcode, OpCodes.Neg); // compute the negative
outRVal.Pop(this, opcode); // pop into result
return outRVal; // tell caller where we put it
}
ErrorMsg(opcode, "can't negate a " + inRVal.type.ToString());
return inRVal;
}
// ~ Complement (bitwise integer)
if(opcode is TokenKwTilde)
{
if(inRVal.type is TokenTypeInt)
{
CompValuTemp outRVal = new (new TokenTypeInt(opcode), this);
inRVal.PushVal(this, opcode, outRVal.type); // push value to negate, make sure not LSL-boxed
ilGen.Emit(opcode, OpCodes.Not); // compute the complement
outRVal.Pop(this, opcode); // pop into result
return outRVal; // tell caller where we put it
}
ErrorMsg(opcode, "can't complement a " + inRVal.type.ToString());
return inRVal;
}
// ! Not (boolean)
//
// We stuff the 0/1 result in an int because I've seen x+!y in scripts
// and we don't want to have to create tables to handle int+bool and
// everything like that.
if(opcode is TokenKwExclam)
{
CompValuTemp outRVal = new (new TokenTypeInt(opcode), this);
inRVal.PushVal(this, opcode, tokenTypeBool); // anything converts to boolean
ilGen.Emit(opcode, OpCodes.Ldc_I4_1); // then XOR with 1 to flip it
ilGen.Emit(opcode, OpCodes.Xor);
outRVal.Pop(this, opcode); // pop into result
return outRVal; // tell caller where we put it
}
throw new Exception("unhandled opcode " + opcode.ToString());
}
/**
* @brief This is called while trying to compute the value of constant initializers.
* It is passed a name and that name is looked up in the constant tables.
*/
private TokenRVal LookupInitConstants(TokenRVal rVal, ref bool didOne)
{
// If it is a static field of a script-defined type, look it up and hopefully we find a constant there.
TokenDeclVar gblVar;
if (rVal is TokenLValSField lvsf)
{
if (lvsf.baseType is TokenTypeSDTypeClass basetypeclass)
{
TokenDeclSDTypeClass sdtClass = basetypeclass.decl;
gblVar = sdtClass.members.FindExact(lvsf.fieldName.val, null);
if (gblVar != null)
{
if (gblVar.constant && (gblVar.init is TokenRValConst))
{
didOne = true;
return gblVar.init;
}
}
}
return rVal;
}
// Only other thing we handle is stand-alone names.
if (rVal is not TokenLValName)
return rVal;
string name = ((TokenLValName)rVal).name.val;
// If we are doing the initializations for a script-defined type,
// look for the constant among the fields for that type.
if(currentSDTClass != null)
{
gblVar = currentSDTClass.members.FindExact(name, null);
if(gblVar != null)
{
if(gblVar.constant && (gblVar.init is TokenRValConst))
{
didOne = true;
return gblVar.init;
}
return rVal;
}
}
// Look it up as a script-defined global variable.
// Then if the variable is defined as a constant and has a constant value,
// we are successful. If it is defined as something else, return failure.
gblVar = tokenScript.variablesStack.FindExact(name, null);
if(gblVar != null)
{
if(gblVar.constant && (gblVar.init is TokenRValConst))
{
didOne = true;
return gblVar.init;
}
return rVal;
}
// Maybe it is a built-in symbolic constant.
ScriptConst scriptConst = ScriptConst.Lookup(name);
if(scriptConst != null)
{
rVal = CompValuConst2RValConst(scriptConst.rVal, rVal);
if(rVal is TokenRValConst)
{
didOne = true;
return rVal;
}
}
// Don't know what it is, return failure.
return rVal;
}
/**
* @brief This is called while trying to compute the value of constant expressions.
* It is passed a name and that name is looked up in the constant tables.
*/
private TokenRVal LookupBodyConstants(TokenRVal rVal, ref bool didOne)
{
// If it is a static field of a script-defined type, look it up and hopefully we find a constant there.
TokenDeclVar gblVar;
if(rVal is TokenLValSField lvsf)
{
if(lvsf.baseType is TokenTypeSDTypeClass TokenTypeSDTypeClasslvsfbaseType)
{
TokenDeclSDTypeClass sdtClass = TokenTypeSDTypeClasslvsfbaseType.decl;
gblVar = sdtClass.members.FindExact(lvsf.fieldName.val, null);
if((gblVar != null) && gblVar.constant && (gblVar.init is TokenRValConst))
{
didOne = true;
return gblVar.init;
}
}
return rVal;
}
// Only other thing we handle is stand-alone names.
if(rVal is not TokenLValName)
return rVal;
string name = ((TokenLValName)rVal).name.val;
// Scan through the variable stack and hopefully we find a constant there.
// But we stop as soon as we get a match because that's what the script is referring to.
CompValu val;
for(VarDict vars = ((TokenLValName)rVal).stack; vars != null; vars = vars.outerVarDict)
{
TokenDeclVar var = vars.FindExact(name, null);
if(var != null)
{
val = var.location;
goto foundit;
}
TokenDeclSDTypeClass baseClass = vars.thisClass;
if(baseClass != null)
{
while((baseClass = baseClass.extends) != null)
{
var = baseClass.members.FindExact(name, null);
if(var != null)
{
val = var.location;
goto foundit;
}
}
}
}
// Maybe it is a built-in symbolic constant.
ScriptConst scriptConst = ScriptConst.Lookup(name);
if(scriptConst != null)
{
val = scriptConst.rVal;
goto foundit;
}
// Don't know what it is, return failure.
return rVal;
// Found a CompValu. If it's a simple constant, then use it.
// Otherwise tell caller we failed to simplify.
foundit:
rVal = CompValuConst2RValConst(val, rVal);
if(rVal is TokenRValConst)
{
didOne = true;
}
return rVal;
}
private static TokenRVal CompValuConst2RValConst(CompValu val, TokenRVal rVal)
{
if(val is CompValuChar CompValuCharval)
rVal = new TokenRValConst(rVal, CompValuCharval.x);
if(val is CompValuFloat CompValuFloatval)
rVal = new TokenRValConst(rVal, CompValuFloatval.x);
if(val is CompValuInteger CompValuIntegerval)
rVal = new TokenRValConst(rVal, CompValuIntegerval.x);
if(val is CompValuString CompValuStringval)
rVal = new TokenRValConst(rVal, CompValuStringval.x);
return rVal;
}
/**
* @brief Generate code to push XMRInstanceSuperType pointer on stack.
*/
public void PushXMRInst()
{
if(instancePointer == null)
{
ilGen.Emit(null, OpCodes.Ldarg_0);
}
else
{
ilGen.Emit(null, OpCodes.Ldloc, instancePointer);
}
}
/**
* @returns true: Ldarg_0 gives XMRSDTypeClObj pointer
* - this is the case for instance methods
* false: Ldarg_0 gives XMR_Instance pointer
* - this is the case for both global functions and static methods
*/
public bool IsSDTInstMethod()
{
return (curDeclFunc.sdtClass != null) &&
((curDeclFunc.sdtFlags & ScriptReduce.SDT_STATIC) == 0);
}
/**
* @brief Look for a simply named function or variable (not a field or method)
*/
public TokenDeclVar FindNamedVar(TokenLValName lValName, TokenType[] argsig)
{
// Look in variable stack for the given name.
for(VarDict vars = lValName.stack; vars != null; vars = vars.outerVarDict)
{
// first look for it possibly with an argument signature
// so we pick the correct overloaded method
TokenDeclVar var = FindSingleMember(vars, lValName.name, argsig);
if(var != null)
return var;
// if that fails, try it without the argument signature.
// delegates get entered like any other variable, ie,
// no signature on their name.
if(argsig != null)
{
var = FindSingleMember(vars, lValName.name, null);
if(var != null)
return var;
}
// if this is the frame for some class members, try searching base class members too
TokenDeclSDTypeClass baseClass = vars.thisClass;
if(baseClass != null)
{
while((baseClass = baseClass.extends) != null)
{
var = FindSingleMember(baseClass.members, lValName.name, argsig);
if(var != null)
return var;
if(argsig != null)
{
var = FindSingleMember(baseClass.members, lValName.name, null);
if(var != null)
return var;
}
}
}
}
// If not found, try one of the built-in constants or functions.
if(argsig == null)
{
ScriptConst scriptConst = ScriptConst.Lookup(lValName.name.val);
if(scriptConst != null)
{
TokenDeclVar var = new (lValName.name, null, tokenScript)
{
name = lValName.name,
type = scriptConst.rVal.type,
location = scriptConst.rVal
};
return var;
}
}
else
{
TokenDeclVar inline = FindSingleMember(TokenDeclInline.inlineFunctions, lValName.name, argsig);
if(inline != null)
return inline;
}
return null;
}
/**
* @brief Find a member of an interface.
* @param sdType = interface type
* @param name = name of member to find
* @param argsig = null: field/property; else: script-visible method argument types
* @param baseRVal = pointer to interface object
* @returns null: no such member
* else: pointer to member
* baseRVal = possibly modified to point to type-casted interface object
*/
private TokenDeclVar FindInterfaceMember(TokenTypeSDTypeInterface sdtType, TokenName name, TokenType[] argsig, ref CompValu baseRVal)
{
TokenDeclSDTypeInterface sdtDecl = sdtType.decl;
TokenDeclVar declVar = sdtDecl.FindIFaceMember(this, name, argsig, out TokenDeclSDTypeInterface impl);
if ((declVar != null) && (impl != sdtDecl))
{
// Accessing a method or propterty of another interface that the primary interface says it implements.
// In this case, we have to cast from the primary interface to that secondary interface.
//
// interface IEnumerable {
// IEnumerator GetEnumerator ();
// }
// interface ICountable : IEnumerable {
// integer GetCount ();
// }
// class List : ICountable {
// public GetCount () : ICountable { ... }
// public GetEnumerator () : IEnumerable { ... }
// }
//
// ICountable aList = new List ();
// IEnumerator anEnumer = aList.GetEnumerator (); << we are here
// << baseRVal = aList
// << sdtDecl = ICountable
// << impl = IEnumerable
// << name = GetEnumerator
// << argsig = ()
// So we have to cast aList from ICountable to IEnumerable.
// make type token for the secondary interface type
TokenType subIntfType = impl.MakeRefToken(name);
// make a temp variable of the secondary interface type
CompValuTemp castBase = new (subIntfType, this);
// output code to cast from the primary interface to the secondary interface
// this is 2 basic steps:
// 1) cast from primary interface object -> class object
// ...gets it from interfaceObject.delegateArray[0].Target
// 2) cast from class object -> secondary interface object
// ...gets it from classObject.sdtcITable[interfaceIndex]
baseRVal.PushVal(this, name, subIntfType);
// save result of casting in temp
castBase.Pop(this, name);
// return temp reference
baseRVal = castBase;
}
return declVar;
}
/**
* @brief Find a member of a script-defined type class.
* @param sdtType = reference to class declaration
* @param name = name of member to find
* @param argsig = argument signature used to select among overloaded members
* @returns null: no such member found
* else: the member found
*/
public TokenDeclVar FindThisMember(TokenTypeSDTypeClass sdtType, TokenName name, TokenType[] argsig)
{
return FindThisMember(sdtType.decl, name, argsig);
}
public TokenDeclVar FindThisMember(TokenDeclSDTypeClass sdtDecl, TokenName name, TokenType[] argsig)
{
for(TokenDeclSDTypeClass sdtd = sdtDecl; sdtd != null; sdtd = sdtd.extends)
{
TokenDeclVar declVar = FindSingleMember(sdtd.members, name, argsig);
if(declVar != null)
return declVar;
}
return null;
}
/**
* @brief Look for a single member that matches the given name and argument signature
* @param where = which dictionary to look in
* @param name = basic name of the field or method, eg, "Printable"
* @param argsig = argument types the method is being called with, eg, "(string)"
* or null to find a field
* @returns null: no member found
* else: the member found
*/
public TokenDeclVar FindSingleMember(VarDict where, TokenName name, TokenType[] argsig)
{
TokenDeclVar[] members = where.FindCallables(name.val, argsig);
if(members == null)
return null;
if(members.Length > 1)
{
ErrorMsg(name, "more than one matching member");
for(int i = 0; i < members.Length; i++)
{
ErrorMsg(members[i], " " + members[i].argDecl.GetArgSig());
}
}
return members[0];
}
/**
* @brief Find an exact function name and argument signature match.
* Also verify that the return value type is an exact match.
* @param where = which method dictionary to look in
* @param name = basic name of the method, eg, "Printable"
* @param ret = expected return value type
* @param argsig = argument types the method is being called with, eg, "(string)"
* @returns null: no exact match found
* else: the matching function
*/
private TokenDeclVar FindExactWithRet(VarDict where, TokenName name, TokenType ret, TokenType[] argsig)
{
TokenDeclVar func = where.FindExact(name.val, argsig);
if((func != null) && (func.retType.ToString() != ret.ToString()))
{
ErrorMsg(name, "return type mismatch, have " + func.retType.ToString() + ", expect " + ret.ToString());
}
if(func != null)
CheckAccess(func, name);
return func;
}
/**
* @brief Check the private/protected/public access flags of a member.
*/
private void CheckAccess(TokenDeclVar var, Token errorAt)
{
TokenDeclSDType nested;
TokenDeclSDType definedBy = var.sdtClass;
TokenDeclSDType accessedBy = curDeclFunc.sdtClass;
//*******************************
// Check member-level access
//*******************************
// Note that if accessedBy is null, ie, accessing from global function (or event handlers),
// anything tagged as SDT_PRIVATE or SDT_PROTECTED will fail.
// Private means accessed by the class that defined the member or accessed by a nested class
// of the class that defined the member.
if((var.sdtFlags & ScriptReduce.SDT_PRIVATE) != 0)
{
for(nested = accessedBy; nested != null; nested = nested.outerSDType)
{
if(nested == definedBy)
goto acc1ok;
}
ErrorMsg(errorAt, "private member " + var.fullName + " cannot be accessed by " + curDeclFunc.fullName);
return;
}
// Protected means:
// If being accessed by an inner class, the inner class has access to it if the inner class derives
// from the declaring class. It also has access to it if an outer class derives from the declaring
// class.
if((var.sdtFlags & ScriptReduce.SDT_PROTECTED) != 0)
{
for(nested = accessedBy; nested != null; nested = nested.outerSDType)
{
for(TokenDeclSDType rootward = nested; rootward != null; rootward = rootward.extends)
{
if(rootward == definedBy)
goto acc1ok;
}
}
ErrorMsg(errorAt, "protected member " + var.fullName + " cannot be accessed by " + curDeclFunc.fullName);
return;
}
acc1ok:
//******************************
// Check class-level access
//******************************
// If being accessed by same or inner class than where defined, it is ok.
//
// class DefiningClass {
// varBeingAccessed;
// .
// .
// .
// class AccessingClass {
// functionDoingAccess() { }
// }
// .
// .
// .
// }
nested = accessedBy;
while(true)
{
if(nested == definedBy)
return;
if(nested == null)
break;
nested = (TokenDeclSDTypeClass)nested.outerSDType;
}
// It is being accessed by an outer class than where defined,
// check for a 'private' or 'protected' class tag that blocks.
do
{
// If the field's class is defined directly inside the accessing class,
// access is allowed regardless of class-level private or protected tags.
//
// class AccessingClass {
// functionDoingAccess() { }
// class DefiningClass {
// varBeingAccessed;
// }
// }
if(definedBy.outerSDType == accessedBy)
return;
// If the field's class is defined two or more levels inside the accessing class,
// access is denied if the defining class is tagged private.
//
// class AccessingClass {
// functionDoingAccess() { }
// .
// .
// .
// class IntermediateClass {
// private class DefiningClass {
// varBeingAccessed;
// }
// }
// .
// .
// .
// }
if((definedBy.accessLevel & ScriptReduce.SDT_PRIVATE) != 0)
{
ErrorMsg(errorAt, "member " + var.fullName + " cannot be accessed by " + curDeclFunc.fullName +
" because of private class " + definedBy.longName.val);
return;
}
// Likewise, if DefiningClass is tagged protected, the AccessingClass must derive from the
// IntermediateClass or access is denied.
if((definedBy.accessLevel & ScriptReduce.SDT_PROTECTED) != 0)
{
for(TokenDeclSDType extends = accessedBy; extends != definedBy.outerSDType; extends = extends.extends)
{
if(extends == null)
{
ErrorMsg(errorAt, "member " + var.fullName + " cannot be accessed by " + curDeclFunc.fullName +
" because of protected class " + definedBy.longName.val);
return;
}
}
}
// Check next outer level.
definedBy = definedBy.outerSDType;
} while(definedBy != null);
}
/**
* @brief Convert a list of argument types to printable string, eg, "(list,string,float,integer)"
* If given a null, return "" indicating it is a field not a method
*/
public static string ArgSigString(TokenType[] argsig)
{
if(argsig == null)
return string.Empty;
if(argsig.Length == 0)
return "()";
StringBuilder sb = new ();
sb.Append('(');
for (int i = 0; i < argsig.Length; i++)
{
if(i > 0)
sb.Append(',');
sb.Append(argsig[i].ToString());
}
sb.Append(')');
return sb.ToString();
}
/**
* @brief output error message and remember that we did
*/
public void ErrorMsg(Token token, string message)
{
if((token == null) || (token.emsg == null))
token = errorMessageToken;
if(!youveAnError || (token.file != lastErrorFile) || (token.line > lastErrorLine))
{
token.ErrorMsg(message);
youveAnError = true;
lastErrorFile = token.file;
lastErrorLine = token.line;
}
}
/**
* @brief Find a private static method.
* @param owner = class the method is part of
* @param name = name of method to find
* @param args = array of argument types
* @returns pointer to method
*/
public static MethodInfo GetStaticMethod(Type owner, string name, Type[] args)
{
return owner.GetMethod(name, BindingFlags.Static | BindingFlags.Public | BindingFlags.NonPublic, null, args, null) ??
throw new Exception("undefined method " + owner.ToString() + "." + name);
}
// http://wiki.secondlife.com/wiki/Rotation 'negate a rotation' says just negate .s component
// but http://wiki.secondlife.com/wiki/LSL_Language_Test (lslangtest1.lsl) says negate all 4 values
public static LSL_Rotation LSLRotationNegate(LSL_Rotation r)
{
return new LSL_Rotation(-r.x, -r.y, -r.z, -r.s);
}
public static LSL_Vector LSLVectorNegate(LSL_Vector v)
{
return -v;
}
public static string CatchExcToStr(Exception exc)
{
return exc.ToString();
}
//public static void ConsoleWrite (string str) { Console.Write(str); }
/**
* @brief Defines an internal label that is used as a target for 'break' and 'continue' statements.
*/
private class BreakContTarg
{
public bool used;
public ScriptMyLabel label;
public TokenStmtBlock block;
public BreakContTarg(ScriptCodeGen scg, string name)
{
used = false; // assume it isn't referenced at all
label = scg.ilGen.DefineLabel(name); // label that the break/continue jumps to
block = scg.curStmtBlock; // { ... } that the break/continue label is in
}
}
}
/**
* @brief Marker interface indicates an exception that can't be caught by a script-level try/catch.
*/
public interface IXMRUncatchable
{
}
/**
* @brief Thrown by a script when it attempts to change to an undefined state.
* These can be detected at compile time but the moron XEngine compiles
* such things, so we compile them as runtime errors.
*/
[SerializableAttribute]
public class ScriptUndefinedStateException: Exception, ISerializable
{
public string stateName;
public ScriptUndefinedStateException(string stateName) : base("undefined state " + stateName)
{
this.stateName = stateName;
}
}
/**
* @brief Created by a throw statement.
*/
[SerializableAttribute]
public class ScriptThrownException: Exception, ISerializable
{
public object thrown;
/**
* @brief Called by a throw statement to wrap the object in a unique
* tag that capable of capturing a stack trace. Script can
* unwrap it by calling xmrExceptionThrownValue().
*/
public static Exception Wrap(object thrown)
{
return new ScriptThrownException(thrown);
}
private ScriptThrownException(object thrown) : base(thrown.ToString())
{
this.thrown = thrown;
}
}
/**
* @brief Thrown by a script when it attempts to change to a defined state.
*/
[SerializableAttribute]
public class ScriptChangeStateException: Exception, ISerializable, IXMRUncatchable
{
public int newState;
public ScriptChangeStateException(int newState)
{
this.newState = newState;
}
}
/**
* @brief We are restoring to the body of a catch { } so we need to
* wrap the original exception in an outer exception, so the
* system won't try to refill the stack trace.
*
* We don't mark this one serializable as it should never get
* serialized out. It only lives from the throw to the very
* beginning of the catch handler where it is promptly unwrapped.
* No CheckRun() call can possibly intervene.
*/
public class ScriptRestoreCatchException: Exception
{
// old code uses these
private readonly object e;
public ScriptRestoreCatchException(object e)
{
this.e = e;
}
public static object Unwrap(object o)
{
if(o is IXMRUncatchable)
return null;
if(o is ScriptRestoreCatchException oe)
return oe.e;
return o;
}
// new code uses these
private readonly Exception ee;
public ScriptRestoreCatchException(Exception ee)
{
this.ee = ee;
}
public static Exception Unwrap(Exception oo)
{
if(oo is IXMRUncatchable)
return null;
if(oo is ScriptRestoreCatchException ooe)
return ooe.ee;
return oo;
}
}
[SerializableAttribute]
public class ScriptBadCallNoException: Exception
{
public ScriptBadCallNoException(int callNo) : base("bad callNo " + callNo) { }
}
public class CVVMismatchException: Exception
{
public CVVMismatchException(string msg) : base(msg)
{
}
}
}